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METHODOLOGY

A “Do-It-Yourself” phenotyping 
system: measuring growth and morphology 
throughout the diel cycle in rosette shaped 
plants
Andrei Dobrescu1,2 †, Livia C. T. Scorza2 †, Sotirios A. Tsaftaris1  and Alistair J. McCormick2* 

Abstract 

Background: Improvements in high-throughput phenotyping technologies are rapidly expanding the scope and 
capacity of plant biology studies to measure growth traits. Nevertheless, the costs of commercial phenotyping equip-
ment and infrastructure remain prohibitively expensive for wide-scale uptake, while academic solutions can require 
significant local expertise. Here we present a low-cost methodology for plant biologists to build their own phenotyp-
ing system for quantifying growth rates and phenotypic characteristics of Arabidopsis thaliana rosettes throughout 
the diel cycle.

Results: We constructed an image capture system consisting of a near infra-red (NIR, 940 nm) LED panel with a 
mounted Raspberry Pi NoIR camera and developed a MatLab-based software module (iDIEL Plant) to characterise 
rosette expansion. Our software was able to accurately segment and characterise multiple rosettes within an image, 
regardless of plant arrangement or genotype, and batch process image sets. To further validate our system, wild-
type Arabidopsis plants (Col-0) and two mutant lines with reduced Rubisco contents, pale leaves and slow growth 
phenotypes (1a3b and 1a2b) were grown on a single plant tray. Plants were imaged from 9 to 24 days after germina-
tion every 20 min throughout the 24 h light–dark growth cycle (i.e. the diel cycle). The resulting dataset provided a 
dynamic and uninterrupted characterisation of differences in rosette growth and expansion rates over time for the 
three lines tested.

Conclusion: Our methodology offers a straightforward solution for setting up automated, scalable and low-cost 
phenotyping facilities in a wide range of lab environments that could greatly increase the processing power and scal-
ability of Arabidopsis soil growth experiments.
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Background
There is an urgent need for novel technologies that moni-
tor and predict the impact of abiotic (e.g. light, temper-
ature) and biotic (e.g. pests, disease) stresses on plant 
growth and productivity at a large scale. Understanding 

the dynamic interactions between genotype, phenotype 
and the growth environment are key to predicting plant 
performance, resource use efficiency, stress tolerance 
and yield (for review see [1, 2]). Although molecular pro-
filing technologies now enable the generation of large 
amounts of data with decreasing costs, the significantly 
slower process of phenotypic trait characterisation has 
become a bottleneck in advancing plant and agronomic 
science. To address this challenge, several automated non-
destructive phenotyping platforms have been developed 
[3]. Government investment in expensive, commercial 
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high-throughput plant phenotyping tools (e.g. [4]) has led 
to the development of several state-of-the-art research 
hubs (e.g. the National Plant Phenomics Centre (www.
plant-phenomics.ac.uk) in the UK). However, shared 
access is required and often at a premium, while hub loca-
tions can make direct research interaction challenging. 
Several academic and commercial lab-based tools also 
have been published for characterising plants, particularly 
the model species Arabidopsis thaliana (hereafter Arabi-
dopsis). However, the wider uptake of such tools has been 
hampered by the local expertise required for hardware 
and software development. The lack of accessible hard-
ware and appropriate algorithms for trait extraction is 
now widely considered the major bottleneck in the plant 
phenotyping field [5]. Several online tools are available for 
measuring plant traits (e.g. www.plant-image-analysis.org 
[6]) to supplement either commercial systems or support 
affordable solutions (e.g. www.phenotiki.com [5]). How-
ever, many image analysis systems lack robust validation 
and are not well supported [6].

Developing capacity to quantify plant growth phe-
notypes throughout the plant life cycle is important 
for understanding dynamic growth traits. For exam-
ple, plants grow differently during the day light–dark 
cycle (i.e. the diel cycle), and show significant changes 

in phenotypic traits such as carbon partitioning to bio-
mass, expansion rates, and leaf movement [7–14]. Regu-
lation of such traits is co-ordinated by internal metabolic 
status (e.g. carbon availability, source-sink dynamics), 
developmental status and organ age, and the response 
of signalling mechanisms (e.g. the circadian clock, plant 
hormones) to the external environment (e.g. light quality, 
temperature, the length of the photoperiod). Significant 
research efforts are focused on investigating and mod-
elling these complex relationships to understand how 
plants optimise performance in response to a dynamic 
growth environment [15–19]. To date, published reports 
that monitor dynamic growth throughout the diel cycle 
have been restricted to expensive and/or custom built-
hardware systems [20–23]. The most commonly used 
method of assessing Arabidopsis rosette growth rates 
is overhead (top-view) 2D image acquisition (Table  1) 
(although 3D systems are now becoming available [13, 
17]). Following image acquisition, image processing ena-
bles the extraction of plant features from the image back-
ground, either through self-calibrated threshold analysis 
of colour and brightness or more complex computer-
vision based methods (e.g. [5, 24]).

Here, we have developed an affordable image capture 
system (ICS) based on the Phenotiki approach [5] for 

Table 1 A list of published 2D imaging systems with reported measured variables for whole Arabidopsis rosettes (top-
down images)

Commercial system providers are shown in parenthesis

VIS visual spectrum, NIR near-infrared, FLUO fluorescence, PRA projected rosette area

Phenotyping system Measured variables Imaging sensors Background References

PHENOPSIS PRA VIS Soil [25]

Growscreen Fluoro PRA, stockiness, leaf count, convex hull, chlorophyll fluores-
cence

VIS, FLUO Soil [8]

WIWAM PRA VIS Soil [26]

Lab Scanalyzer (Lemnatec) PRA, chlorophyll content and fluorescence, leaf angle, several 
morphometric parameters

VIS, NIR FLUO Soil, plates [4, 22]

OSCILLATOR Leaf length, leaf movement NIR Soil [27]

Rosette Tracker PRA, rosette diameter compactness, stockiness, rosette tem-
perature

VIS, TIR Soil [21]

PhenoPhyte PRA VIS Soil [28]

Not named PRA, rosette diameter, compactness VIS Soil [29]

Leaf colour segmentation PRA, convex hull VIS Soil [30]

HPGA PRA, leaf area, leaf count, leaf length, growth modelling analysis FLUO Soil [31]

Easy leaf area PRA VIS Soil [32]

Not named PRA, compactness, stockiness VIS, NIR Black (agar plates) [20]

PlantScreen (PSI) PRA, chlorophyll fluorescence, several morphometric param-
eters

VIS, FLUO Soil [33]

MSU-PID pipeline for leaf segmentation, leaf counting and leaf tracking Depth, VIS, NIR, FLUO Black (plants in soil) [34]

Phenovator PRA, chlorophyll content and fluorescence VIS (filtered), FLUO Black (hydroponics) [23]

Phenotiki PRA, leaf length, rosette diameter, compactness, stockiness, leaf 
count

VIS Soil [5]

RosettR PRA VIS White (agar plates) [24]

http://www.plant-phenomics.ac.uk
http://www.plant-phenomics.ac.uk
http://www.plant-image-analysis.org
http://www.phenotiki.com
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the high-throughput phenotyping of soil-grown Arabi-
dopsis plants throughout the diel cycle. The hardware is 
based on commonly available parts that are straightfor-
ward to order, and assembly requires some basic solder-
ing and tools available at most fabrication facilities. The 
associated software module (iDIEL Plant) retains a high 
degree of versatility by allowing users to choose suitable 
parameters for experimental analysis rather than requir-
ing adherence to a specific growth condition. To test the 
capacity of the ICS to capture growth data, and iDIEL 
Plant to identify and accurately measure growth for dif-
ferent plant phenotypes, we first performed a robust vali-
dation exercise and then tracked the growth of wild-type 
(WT) plants and two Rubisco-deficient mutants (1a2b 
and 1a3b) that differed in growth rate and leaf colour 
(i.e. chlorophyll content) [35]. Our results demonstrated 

that this system offers a robust, low-cost solution for the 
uninterrupted capture of plant growth data throughout 
the diel cycle.

Methods
Construction of the image capture system (ICS)
The near infra-red (NIR) LED frame was designed in 
qCAD [www.qcad.org]) and fabricated using a 4  mm 
thick clear acrylic sheet [400  ×  280  mm (L  ×  W)] 
(Fig.  1a, b). A total of 173 NIR 1.3  V through-hole 
5  mm LEDs with a peak emittance of 940  nm [King-
bright L-7113F3C, RS (www.uk.rs-online.com)] were 
mounted on the acrylic sheet through paired circular 
holes (1.4 mm in diameter, 2.6 mm apart) using an Epi-
log 60 W CO2 Laser Cutter (www.epiloglaser.co.uk). The 
NIR LEDs were positioned 30 mm apart along the length 

Fig. 1 Setup of the image capture system. a The image capture system (ICS) consisted of a NIR LED frame, a Raspberry Pi (RPi) computer and a 
RPi camera (PI NoIR). b The NIR LED frame consisted of 173 NIR LEDS arranged in parallel circuits. The design allowed the camera to be positioned 
centrally in the frame (see Additional file 1 for assembly guidelines). c Arabidopsis WT plants and Rubisco mutants 1a3b and 1a2b (18 DAG) under 
visible light (VIS) conditions captured by the ICS with the NIR LEDs off. d Automated segmentation of the plants shown in (c). e Near-infrared (NIR) 
image of plants shown in (c) taken in the dark illuminated by NIR LEDs. The last image of the 18th light period (c) was used as a starting mask for the 
following dark period image (e). The outline of the active contour mask is shown in red. Bars: B = 40 mm; C, D, E = 25 mm

http://www.qcad.org
http://www.uk.rs-online.com
http://www.epiloglaser.co.uk
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and 20 mm apart along the width of the acrylic sheet and 
were soldered together using solder wire (0.5 mm, 60/40 
tin/lead) and a standard soldering iron with a fine point 
tip. A total of 28 axial fixed resistors were soldered in line 
with each parallel NIR LED circuit (see Additional file 1 
for further details). The soldered wires were attached to 
the acrylic sheet using acrylic glue. The NIR LED circuit 
was powered via a 12 V DC 2A power supply adaptor. We 
designed four supporting legs [two perpendicular acrylic 
strips, 420 × 20 × 4 mm (L × W × B), glued together] 
and attached an acrylic foot base [40  ×  40  ×  4  mm 
(L × W × B)] to each leg (Epilog 60 W  CO2 Laser Cut-
ter). The legs were attached to the NIR LED frame using 
3D printed corner braces [Wanhao Duplicator 4 (www.
wanhao3dprinter.eu)]. The uniformity of NIR illumina-
tion provided by the rig and light transmittance through 
the acrylic frame were measured using a UV–Vis–NIR 
spectrometer [USB2000  +  UV–Vis (www.oceanoptics.
com)].

Images were acquired using a Raspberry Pi (RPi) cam-
era module (RPi NoIR with a 5 MP OmniVision OV5647 
sensor and IR filter removed) connected to a model 2B 
RPi computer (www.raspberrypi.org). The RPi NoIR was 
mounted centrally in the acrylic frame of the rig above 
the plant tray (Fig.  1a) and was operated and config-
ured remotely using the RPi Cam-Web-Interface (www.
elinux.org/RPi-Cam-Web-Interface) via a web browser 
on a Windows computer. The images were transferred 
remotely using Filezilla (www.filezilla-project.org/). The 
total weight of the ICS was approximately 400 g.

Plant materials and growth conditions
Initial validation of the ICS was made using Arabidop-
sis [Arabidopsis thaliana (L.) Heynh. Col-0] WT plants 
15 days after germination (DAG) grown at 21  °C, ambi-
ent  CO2, 70% relative humidity and 150  μmol photons 
 m−2  s−1 in a 12: 12 h light: dark cycle. To further test the 
ICS, the growth phenotypes of Arabidopsis WT plants 
and two Arabidopsis Rubisco small subunit mutant lines, 
1a2b and 1a3b (Col-0 background) [35], were compared. 
All plants in the latter study were grown from seeds of 
the same age and storage history, and were harvested 
from plants grown in the same environmental condi-
tions to have a robust comparison of the three different 
genotypes. The seeds were sown in pots containing an 
organic compost-soil mix [F2 + S,  Levington® (www.icl-
sf.com)], stratified for 3 days at 4 °C, transferred to a side-
lit growth cabinet [Snijders Scientific model ECD01E, 
(www.snijderslabs.com)] and grown in the same condi-
tions described above. Seedlings (8 DAG) were trans-
planted to individual pots in a plant tray (each pot 
50 × 50 mm) containing F2 + S. The transplanted plants 
were maintained in the same growth cabinet conditions.

Data acquisition
During growth experiments, images were captured every 
20 min throughout the diel cycle for 16 days (9–24 DAG). 
The NIR LED array was synchronised with the growth 
cabinet to turn on at the beginning of the dark period 
and turn off and the beginning of the next light period. 
The ICS and the plant tray were not moved throughout 
the experiment to preserve background consistency.

Segmentation of VIS and NIR images
For image analysis we developed a software module 
called iDIEL Plant. iDIEL Plant can segment Arabidopsis 
rosettes from both VIS (light) and NIR (dark) images and 
can extract quantitative estimates of projected rosette 
area (PRA). The software automatically numbers plants 
from left to right as they appear in the image, or manually 
by clicking on the centre of each plant. Thus, plants could 
be analysed regardless of arrangement in the image. 
ImageJ [v1.5n (imagej.nih.gov/ij)] was used to validate 
VIS and NIR image analyses. We further validated iDIEL 
Plant by examining segmentation accuracy from a pub-
lished dataset of VIS and NIR Arabidopsis images [34]. 
The iDIEL Plant module will be made available for free 
download.

For growth experiments, each light and dark period 
contained 35 images, which were batch analysed. Plants 
remained separated (i.e. rosette leaves of different plants 
did not touch or overlap) during the growth period. 
Segmentation of rosettes from VIS images was done by 
thresholding each rosette from the background (Fig. 1c, 
d). iDIEL Plant offers the flexibility of choosing between 
three different colour spaces (RGB, HSV and Lab) and 
grayscale Otsu [36] (i.e., only luminance) for threshold-
ing, which increases capacity for finding a suitable colour 
space for any given image dataset. Each colour space is 
composed of three channels: RGB is composed of red, 
green and blue; HSV is composed of hue, saturation (S) 
and value (V); and Lab is composed of lightness, a (rep-
resenting green/red) and b (representing blue/yellow) 
channels [37, 38]. Thresholding can be done by modify-
ing the range of each channel in a colour space until the 
plants remain in the foreground and the background is 
segmented away. The effects of the modifications can be 
seen in real time to give a better indication of the effec-
tiveness of segmentation. The VIS images in this study 
were segmented in the HSV colour space as it provided 
the best segmentation results for our setup.

NIR images of the plant tray contain information satu-
rated on just the grayscale spectrum, preventing the use 
of HSV colour segmentation. Thus, to batch process the 
dark image sets, each NIR image was segmented using a 
Chan-Vese active contour method to separate foreground 
(plant) from the background [39]. The Chan–Vese active 

http://www.wanhao3dprinter.eu
http://www.wanhao3dprinter.eu
http://www.oceanoptics.com
http://www.oceanoptics.com
http://www.raspberrypi.org
http://www.elinux.org/RPi-Cam-Web-Interface
http://www.elinux.org/RPi-Cam-Web-Interface
http://www.filezilla-project.org/
http://www.icl-sf.com
http://www.icl-sf.com
http://www.snijderslabs.com
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contour algorithm is a region-based intensity driven 
model for delineating objects in images. Two regions are 
defined in the image by one or more curves that wrap 
around the chosen objects, dividing the image into fore-
ground (inside the curve) and background (outside the 
curve). Each region is represented by a constant energy 
term, which is given by the average pixel value inten-
sity within the region. The algorithm allows the curves 
to expand (or contract) to minimise the energy differ-
ence between the regions, resulting in segmentation of 
the chosen objects (i.e. rosettes). Since the Chan–Vese 
algorithm requires initial curves, the segmented rosettes 
from the last VIS image of each light period was taken 
as the initialization region of interest (ROI) mask for 
the active contour algorithm (Fig. 1c–e). The segmented 
rosettes from the following NIR image mask then was 
taken as the initialization mask for the subsequent NIR 
image for the remaining images in each set. As images 
were captured every 20 min, differences in plant appear-
ance between sequential images were relatively small. The 
reverse approach can also be applied by using the oppo-
site energy constraint (i.e. to contract) on the Chan-Vese 
formulation and using the first image of the light period 
as the starting mask and processing the NIR images in 
reverse starting from the end of the dark period. In this 
study both forward (day1-night-day2) and reverse (day2-
night-day1) approaches were used and the data averaged.

LED placement and growth chamber characteristics 
can affect the quality of the NIR images.

iDIEL Plant is able to estimate and correct for uneven 
illumination (Fig.  1e). Firstly, grayscale pixel values are 
brought closer to the mean intensity values of the whole 
image. Secondly, a Gaussian blur is applied to the image 
to obtain a pixel intensity map of the lighter and darker 
regions. The pixel intensity values in the original image 
are then increased or decreased, respectively, based on 
the difference between the pixel intensity values of the 
intensity map and the mean intensity of the image map. 
The uneven illumination correction was used when 
analysing single channel grayscale images (i.e. the dark 
period and thresholding in the grayscale channel).

Data processing
When segmentation was completed, the segmented 
image was correlated with the given plant indices and 
the area of each individual plant estimated. The data was 
exported to a Microsoft Excel file. Relative expansion rate 
(RER) was calculated in terms of PRA expansion accord-
ing to Eq. 1 [13, 40]:

Daily RER was estimated using the PRAs obtained at the 
beginning and end of each light period. RER was also 

(1)RER = (ln PRA1− ln PRA2)/(t1−t2)

estimated over diel cycle using a sliding median window 
of 10 frames (i.e. approximately 3 h) [13].

Results and discussion
Performance of the image capture system (ICS)
The ICS consisted of a low-cost custom-built NIR LED 
frame and RPi-based image acquisition system. As the 
material costs of the rig were < £100, the ICS proved to be 
a relatively affordable but powerful tool for Arabidopsis 
phenotyping [5]. The relatively small size and weight of 
the ICS simplified handling and transport. Furthermore, 
the qCAD design is malleable—the LED frame could be 
modified or arrayed to the end-users requirements.

The use of a clear acrylic frame minimised reflection 
and shading effects when images were taken during the 
light cycle. No measurable decrease in photosynthetically 
active radiation (PAR) was observed when the rig was set 
up in the side-lit growth cabinet used for growth experi-
ments in this study. When light levels were measured 
under the rig in a vertically lit growth chamber (Snijders 
Scientific model MC1000), an average decrease of 14% in 
PAR was observed (180–154 μmol photons  m−2 s−1). The 
reduction in PAR could be compensated for by adjusting 
the growth cabinet light output. Thus, we recommend 
testing light intensity under the rig for top-light or glass 
house experiments.

To test the uniformity of NIR illumination we meas-
ured light quality and quantity in the area under the ICS 
(Fig. 2). We observed a clear peak at 940 nm with a range 
of 850–1000  nm, and an average intensity of 30  μmol 
photons  m−2 s−1. A small decrease in light intensity was 
observed in the central area around the camera, which 
had a reduced density of NIR LEDS. As expected, the 
light intensity also showed a drop off towards the edges 
of the ICS frame. However, the plant tray was located 
well within this zone. Despite the minor variations in 
NIR light intensity, image capture quality was sufficient 
to accurately segment all plant images throughout the 
growth experiment.

Raspberry Pi cameras have previously been shown to 
produce good quality VIS images for plant trait extrac-
tion and are a low-cost and easy-to-setup alternative to 
expensive cameras used in other plant imaging systems 
[5]. Here, we found that the RPi NoIR camera was capa-
ble of capturing VIS and NIR images for image analysis. 
The ICS was able to acquire images at a maximum rate 
of ten images per minute. Furthermore, the camera could 
be controlled and image data transmitted remotely, giv-
ing significant flexibility to the user.

Data processing and software validation
VIS images can be batch processed by other available 
software tools for plant segmentation, such as Phenotiki 
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and Rosette Tracker [5, 21]. However, we found that 
automatic segmentation of NIR images for soil-grown 
plants was challenging using available software tools. For 
example, software from Zhang et  al. [29] suffered from 
low signal-to-noise ratios and removed night images dur-
ing analysis. Rosette Tracker [21] relies on corresponding 
chlorophyll fluorescence or VIS images for manual anno-
tation of dark images taken with a thermal IR camera, 
and Dhondt et  al. [20] is optimised for imaging plants 
grown in agar-containing Petri dishes under relatively 
low PAR levels (60 μmol photons  m−2 s−1). Therefore, we 
developed a MatLab-based software module called iDIEL 
Plant for segmentation and improved batch extraction 
of Arabidopsis rosette images from both VIS and NIR 
images.

Processing NIR images can be difficult due to increases 
in background noise (e.g. soil reflectance) when using 
thresholding compared to VIS images. Furthermore, 
NIR images are grayscale and cannot use the VIS image 
colour spaces and channels for thresholding (Fig. 1c, e), 
which makes it more challenging to define contours for 
segmentation. To overcome this problem, we relied on an 
active contour algorithm that uses a VIS image obtained 
shortly before/after the NIR image as an initialization 
mask [39]. Previously, De Vylder et  al. [21] developed a 
similar approach for the Rosette Tracker software, which 
uses a correspondent VIS image as a projected mask to 
analyse thermal infrared images (TIR). Rosette Tracker 
utilises a warping method that requires the user to manu-
ally identify and click on several regions in each VIS and 
IR corresponding image. For iDIEL Plant, image analysis 
was batched, such that the segmentation mask of each 
image was used as the initialization mask for the subse-
quent image. We found that this approach reduced back-
ground noise and provided a better initialisation point 
for the active contour algorithm.

The iDIEL Plant module currently extracts PRA esti-
mates from VIS and NIR images, and could export seg-
mentation masks and write raw and processed data in the 

database format required by Phenotiki [5]. This permits 
the use of the Phenotiki software to extract additional 
growth traits (e.g. compactness, stockiness) and utilisa-
tion of other modules within Phenotiki (e.g. leaf counting 
and semi-automated leaf segmentation) [41].

Validation using ground truth measurements and/
or published datasets is now considered a key require-
ment for developing plant imaging systems [6]. The accu-
racy of iDIEL Plant was initially validated by comparing 
PRA estimates with two different manual measurement 
methods (Fig. 3a). Firstly, 2D image data (VIS and NIR) 
were manually contoured in ImageJ to calculate rosette 
areas. Secondly, we used a destructive (ground truth) 
approach, where whole rosettes were dissected and indi-
vidual leaves of each plant were scanned. The destruc-
tive method excluded the presence of features that might 
cause discrepancies in the estimated area obtained by 2D 
imaging methods, such as leaf curvature, hyponasty, hid-
den petioles or overlapped leaves. iDIEL Plant was able 
to measure PRA with high accuracy for VIS and NIR 
images, showing estimates close to those obtained by 
manual segmentation and ground truth measurements. 
On average, the estimates from ground truth measure-
ments were closer to those obtained from iDIEL Plant 
than those from ImageJ. The manual PRA estimates from 
ImageJ were not significantly different from values given 
by iDIEL Plant. To further validate the capacity of iDIEL 
Plant to accurately extract PRA estimates from available 
datasets, we used VIS and NIR plant images provided by 
Cruz et al. [34] (Fig. 3b, c). The dataset contained images 
of Arabidopsis Col-0 WT plants grown in a 16: 8 h light: 
dark cycle from 15 to 24 DAG on soil (i.e. a black back-
ground). Cruz et al. [34] provided raw images and rosette 
segmentation masks at a temporal resolution of four 
images per day. The masks were used as a representative 
proxy for PRA and were compared with the PRA esti-
mates obtained from iDIEL Plant following analysis of 
the raw images. The raw VIS images and NIR images dif-
fered in resolutions and were not co-registered, thus we 

Fig. 2 Distribution of NIR light under the ICS. a Emittance peak of the NIR LEDs (940 nm). b Light levels under the rig (420 mm beneath the NIR LED 
frame) in a total area of approximately 340 × 240 mm
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analysed them independently. VIS image datasets were 
batch processed in iDIEL Plant using thresholding in the 
HSV colour space. For processing NIR images, we manu-
ally calibrated the first image of each plant in the data-
set (15 DAG) using grayscale Otsu thresholding [36], and 
then batch processed further images using the Chan-Vese 
active contour approach (see “Methods” section). Com-
parison between the provided masks and PRA estimates 
produced by iDIEL Plant showed no significant differ-
ence for both VIS and IR image datasets. These validation 
results also demonstrated that iDIEL Plant can accu-
rately predict PRA from images obtained using different 
parameters from those used in our study.

Furthermore, we tested the segmentation performance 
of iDIEL Plant with different soil backgrounds (Addi-
tional file 2). Comparison of the PRAs of plants placed on 
four common soil mixture components (F2 + S, F2 + S 
mixed with perlite, coco peat, and vermiculite) showed 
that the software could accurately segment rosettes in 
VIS and NIR images with a variety of different back-
grounds. However, we advise against using components 
with reflective particles, such as perlite of vermiculite, 
as these can sometimes be included in segmentation if 
touching the rosette, potentially leading to an artificial 
increase in PRA. If these are required for an experiment, 
we recommend using a black felt fabric cover or a layer of 
a homogeneous dark top soil to maximize segmentation 
accuracy.

Diel analyses of plant growth traits
Despite the reduced growth and pale leaf phenotypes of 
the two Rubisco mutants, iDIEL Plant successfully seg-
mented and analysed 1a2b and 1a3b plants during the 
growth period tested. Following segmentation and trait 
extraction, we initially compared the end of day PRA 
for each genotype (Fig.  4a). WT plants showed a typi-
cal exponential growth pattern, with a PRA of 470 mm2 
at 24 DAG. Both 1a2b and 1a3b showed a significantly 
decreased PRA compared to the WT plants throughout 
the growth experiment. At 24 DAG, 1a2b had a PRA of 
150  mm2, while 1a3b was eightfold smaller than WT 
plants, reaching only 62 mm2. The reduced growth rates 
observed for 1a2b and 1a3b were in accordance with pre-
vious reports [35, 42].

Tracking PRA estimates at an increased temporal reso-
lution (i.e. 20  min intervals) revealed additional growth 
details (Fig.  4b). We captured evidence of rhythmic leaf 
movements, characterised by the elevation (hyponasty) 
and lowering (epinasty) of the leaves during the diel 
cycle [11]. Leaf movement was evident for WT plants by 
depressions in the growth curve at the beginning of the 
light period (i.e. the PRA of the 2D rosette images was 
reduced). Video analysis revealed that WT leaves moved 

Fig. 3 Validation of projected rosette area estimates. a Average 
projected rosette area (PRA) estimates obtained from seven individual 
plants (15 DAG). VIS and NIR images were analysed using iDIEL Plant 
(as described in the “Methods” section) or ImageJ (manual measure-
ment). The rosettes were then detached and individual leaves were 
scanned and measured manually to obtain a ground truth measure-
ment. No significant differences in PRA were observed (one-way 
ANOVA; p ≤ 0.05). The mean absolute percentage error (MAPE) was 
calculated for each dataset in relation to ground truth. b, c Valida-
tion using the Arabidopsis image dataset provided by Cruz et al. [34]. 
Segmentation masks for seven WT plants (plant 1, 3, 5, 7, 8, 10 and 15) 
[34] from VIS and NIR images at 9, 12,16 and 20 h for 9 days (15–24 
DAG) are given in total number of pixels (kilopixels, Kpx) (grey). PRA 
estimates from respective raw VIS (yellow) and NIR (green) images 
analysed by iDIEL Plant are shown. Bars represent the mean ± SE. 
No significant differences were observed at any time point (paired 
Student’s t test; p ≤ 0.05)
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downwards before moving upwards again during this 
period (Additional file 3). Our observations correlate well 
with the temporal leaf movement patterns seen in other 
studies with WT Arabidopsis plants [11, 13]. In contrast, 
similar leaf movement patterns were much reduced for 
1a2b and not detected for 1a3b at the onset of the light 
period. This observation may indicate that leaf move-
ment is inhibited for both Rubisco mutants. Alterna-
tively, leaf movements may have been less pronounced 
compared to WT plants and were not detected using the 

ICS. Previous work has shown that leaves of the starch-
less pgm mutant have reduced and delayed hyponastic 
responses, suggesting that changes in carbon metabolism 
may impact on the rhythmicity of leaf movements [13]. 
Thus, the Rubisco mutants used in the present study may 
be similarly affected by reduced carbon availability.

Next, we examined the 3-day average RER of each 
genotype over the growth period to investigate if the 
observed growth impairment in the Rubisco mutants was 
a result of a sustained reduction in RER or a decrease in 

Fig. 4 Growth analysis of Arabidopsis WT and the Rubisco mutants using iDIEL Plant. a Daily PRAs (represented by the dots and trend line) and 
relative expansion rates (RER; bars) were calculated using the last VIS image obtained in each light period over 15 days. Values are the mean ± SE 
of measurements made on six individual rosettes for each genotype. The RER values shown are the average RER obtained every 3 days; asterisks 
indicate significant difference (p ≤ 0.05) as determined by one-way ANOVA and post hoc Tukey’s multiple comparison test. b PRAs obtained every 
20 min over the entire diel cycle. The solid darker lines represent PRA values and the lighter colours behind the lines are the mean ± SE. The grey 
bars represent the dark periods. The insert highlights epinastic leaf movements observed for WT plants (transition from 18th dark period to 19th 
light period). Leaf movements are indicated by the consistent drop in PRA (arrow) in the beginning of the light period (see Additional file 3 for video 
data)
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RER during a particular developmental phase (Fig.  4a). 
WT plants had an increased RER compared to both 
mutants from 9 to 20 DAG. The RER of 1a3b was sig-
nificantly lower than WT plants throughout this period. 
In contrast, 1a2b was on average lower than WT plants, 
but the observed reduction was not consistently signifi-
cant. These dissimilarities in RER could be explained by 
the relative differences in Rubisco content for 1a2b and 
1a3b, which are reduced by 50 and 30%, respectively 

[35, 42]. Rubisco content in C3 leaves is usually found 
in excess to facilitate dynamic adjustment to changes in 
the environment, such as increased irradiance or tem-
perature. Even when Rubisco activity is reduced by up to 
50%, plants may not show a significant change in growth 
phenotype under non-limiting growth conditions (i.e. the 
light levels used in this study were non-saturating) [41]. 
Nevertheless, both Rubisco mutants showed a progres-
sive improvement in RER as they matured and were more 

Fig. 5 Relative expansion rate (RER) of WT and Rubisco mutants over the diel cycle during three developmental stages. The RER was estimated dur-
ing three different periods of growth: a the young phase (9–11 DAG), b the maturing phase (15–17 DAG), and c the mature phase (21–23 DAG). The 
grey bars represent the dark periods
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similar to WT values at 21 DAG (Figs. 4a, 5), indicating 
that the observed slow growth phenotypes of 1a2b and 
1a3b was primarily due to a reduced RER in the early 
principal growth stages of rosette development [44].

The RER of each genotype was further investigated over 
the diel cycle at a higher temporal resolution during three 
different growth phases (Fig. 5). WT plants showed a rela-
tively consistent RER pattern at all three growth phases, 
which included a rise in RER during the light period fol-
lowed by a decline, and then a brief peak during the begin-
ning of the dark period followed by a steady decrease until 
the following light period. RER fluctuations were much 
less pronounced in older WT plants. These growth rate 
patterns were similar to those observed for Arabidop-
sis rosettes in previous 2D studies and high precision 3D 
analyses of RER in diel cycles [13, 17, 20]. Both Rubisco 
mutants also showed an increase in RER during the light 
period, but the peak was much more discrete than WT 
plants, particularly for 1a3b. This observation is in accord-
ance with the lower daily RER observed for these plants 
from 9 to 11 DAG (Fig. 4a). Surprisingly, younger Rubisco 
mutants showed an increase in RER during the dark period, 
typically with a higher peak than in the light period (Fig. 5a, 
b). In general, both Rubisco mutants showed a similar RER 
pattern, the difference being 1a3b had a comparatively 
reduced RER. This pattern persisted in the second growth 
phase (15–17 DAG), but gradually switched to a WT-
like pattern during the third growth phase (21–23 DAG) 
(Fig.  5b, c). Previously, transgenic tobacco plants with 
reduced Rubisco levels were characterised by a decreased 
accumulation of sugars and starch during the light period 
compared to WT plants, but typically maintained WT-
like rates of starch utilisation in the dark period, such that 
starch reserves in the transgenic plants were more depleted 
by dawn [9, 43]. The latter phenomenon was attributed to 
an increase in sink demand for carbon compared to WT 
plants [41] and may account for the RER patterns observed 
for the younger 1a3b and 1a2b mutants.

Conclusion
Our goal was to develop a simple, robust and affordable 
phenotyping system capable of tracking the growth of 
multiple plants during development throughout the diel 
cycle. The use of low cost components, easy-to-source 
hardware, and simplified construction requirements 
should significantly lower the entry barrier for plant 
researchers and facilitate scaling to more high-through-
put phenotyping analyses [5]. Our ICS design enabled the 
acquisition of dynamic and continuous image data, while 
the iDIEL Plant module could batch process image data 
for Arabidopsis genotypes that differed in size and hue. 
As a caveat, 2D imaging approaches should be considered 
only a proxy for 3D RER, as 2D data can convolute leaf 

growth, leaf movement and, in older rosettes, leaf over-
lap [5, 20, 21]. Furthermore, leaf tissue characteristics 
can vary between genotypes or in response to the growth 
environment, thus it is important to match 2D imaging 
of novel or uncharacterised genotypes with destructive 
analyses (e.g. fresh and dry rosette weight) to determine 
parameters such as specific leaf area, leaf thickness and 
density [16, 35]. Nevertheless, 2D RER appears to be a 
sensitive method for detecting relative changes in rosette 
shape, and could be used as a proxy to indicate differ-
ences between genotypes and/or environmental factors.
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