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Abstract. Our submission to the STACOM Challenge at MICCAI 2015
is based on the supervised learning of functional map representation
between End Systole (ES) and End Diastole (ED) phases of Left Ventricle
(LV), for classifying infarcted LV from the healthy ones. The Laplace-
Beltrami eigen-spectrum of the LV surfaces at ES and ED, represented
by their triangular meshes, are used to compute the functional maps.
Multi-scale distortions induced by the mapping, are further calculated
by singular value decomposition of the functional map. During training,
the information of whether an LV surface is healthy or diseased is known,
and this information is used to train an SVM classifier for the singular
values at multiple scales corresponding to the distorted areas augmented
with surface area difference of epicardium and endocardium meshes. At
testing similar augmented features are calculated and fed to the SVM
model for classification. Promising results are obtained on both cross
validation of training data as well as on testing data, which encourages
us in believing that this algorithm will perform favourably in comparison
to state of the art methods.
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1 Introduction

Cardiac remodeling is a clinical term to refer the geometric changes occur on the
Left Ventricle (LV) due to myocardial infarction. This phenomenon is considered
as an important predictor for survival [14] in clinical practice. However current
clinical practices are limited to simple quantities like mass, volume, dimension
ratio etc. for important predictions. As a result, important geometric quanti-
ties are completely ignored in clinical practice, and only few recent studies on
small population have been proposed to quantitatively measure the geometrical
structural modification of LV during cardiac remodeling in Multirow Detector
Computer Tomography (MDCT) images [8–10].
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However, large population-based studies have been recently performed using
cardiovascular magnetic resonance (CMR) imaging [2]. CMR, as a non-invasive
radiation-free modality, provides rich and detailed quantitative data of the car-
diac function and structure. The main goal of the STACOM 2015 challenge is
to employ shape analysis and pattern recognition techniques to quantitatively
measure geometric changes during cardiac remodeling. In this paper, rather than
approaching the problem in a pure feature-driven binary classification technique,
we aimed quantifying and visualizing the shape deformation between End Sys-
tolic (ES) and End Diastolic (ED) states for healthy and diseased LVs.

Cardiac remodeling results in contraction of myocardium and volume. When
represented as a 2D manifold embedded in 3D space, these quantities can be
approximated by the surface area of the 2D manifold discretized as a triangular
mesh. As a result, a measure of surface area distortion can effectively quantify
cardiac remodeling. Moreover, we have also observed that the area distortion of
LV is a multi-scale phenomenon and tried to model it in a similar multi-scale
fashion (from global to local) to emphasize actual physiological changes. In terms
of machine learning, these steps can be considered as a feature selection proce-
dure which ensures the selection of most distinguishing features. In particular, we
have incorporated the recently developed functional map framework [11,12] to
analyze and visualize ES-ED shape variation between healthy and diseased LVs.

We hypothesize that by learning the features of those regions, where the ES-
ED deformation has introduced maximum distortion, we can successfully quan-
tify the geometric changes during cardiac remodeling. The main contributions
of this paper are twofold. First, we introduce Functional Map based shape varia-
tion exploration in cardiac image analysis context. Second, we present supervised
learning of localized feature variations for quantifying cardiac remodeling. The
remainder of the paper is organized as follows: Sect. 2 discusses related work,
Sect. 3 presents the proposed method, whereas the implementation details are
described in Sect. 4. Results are described in Sect. 5 and finally, Sect. 6 offers
discussions and conclusion.

2 Related Work

Finite-element analysis has been the de-facto standard for modeling LV shape
and function, providing measures accurate enough to be incorporated into clin-
ical practice [7]. Principal component analysis (PCA) is extensively used for
analyzing the modes of shape patterns found in populations [1]. However, the
unsupervised nature of PCA is sometimes limited towards finding clinically inter-
pretable features.

The most advanced technique for quantifying geometric changes during car-
diac remodeling is proposed by Mukhopadhyay et al. in this series of work
[8–10]. Here, the authors have proposed 3D Bag-of-words approach with extrinsic
and intrinsic isometry invariant geometric features for quantifying local cardiac
remodeling. However, this work does not address the multi-scale properties of
distortion introduced by cardiac remodeling.
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3 Method

In the proposed approach, we have relied on derived quantities of functional
maps, in order to learn the distortions introduced during cardiac remodeling.
Before describing the proposed approach in detail, we provided an overview of
the functional map framework proposed by Ovsjanikov et al. [11] in Sect. 3.1 and
the distortion analysis mechanism [12] in Sect. 3.2.

3.1 Functional Maps

A functional map is a novel approach for inference and manipulation of maps
between shapes that tries to resolve the issues of correspondences in a funda-
mentally different manner. Rather than plotting the corresponding points on the
shapes, the mappings between functions defined on the shapes are considered.
This notion of correspondence generalizes the standard point-to-point map since
every point-wise correspondence induces a mapping between function spaces,
while the opposite, in general, is not true.

The proposed functional map framework described above provides an elegant
way, using a functional representation, to avoid direct representation of corre-
spondences as mappings between shapes. Ovsjanikov et al. [11] have noted that
when two shapes X and Y are related by a bijective correspondence t : X → Y
and endowed with measures μX and μY , then for any real function f : X → R,
one can construct a corresponding function g : Y → R as g : f ◦ t−1. In other
words, the correspondence t uniquely defines a mapping between the two function
spaces F (X,R) → F (Y,R), where F (X,R) denotes the space of real functions on
X. Equipping X and Y with harmonic bases, {φi}i≥1 and {ψj}j≥1, respectively,
one can represent a function f : X → R using the set of (generalized) Fourier
coefficients {ai}i≥1 as f =

∑
i≥1 aiφi.

Translating this representation into the other harmonic basis {ψj}j≥1, one
obtains a simple representation of the correspondence between the shapes given
by T (f) =

∑
i,j≥1 aicijψj where cij are Fourier coefficients of the basis functions

of X expressed in the basis of Y , defined as T (φi) =
∑

i,j≥1 cijψj . The correspon-
dence t between the shapes can thus be approximated using k basis functions
and encoded using a k×k matrix C = (cij) of these Fourier coefficients, referred
to as the functional matrix. In this representation, the computation of the shape
correspondence t : X → Y is translated into a simpler task of determining the
functional matrix C from a set of correspondence constraints. The matrix C has
a diagonal structure if the harmonic bases {φi}i≥1 and {ψj}j≥1 are compatible,
which is a crucial property for the efficient computation of the correspondence.

3.2 Analyzing Functional Maps

Here, the main goal is to isolate the regions where the map has induced sig-
nificant distortion at various scales. This is simply achieved by considering the
functional representation of a map C and performing spectral analysis on this
representation, as shown in Figs. 1 and 2. It is expected that for an optimal map
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Fig. 1. The region where the map has distorted the area measure the most, at various
scales k for an exemplary healthy subject. Note that the region is becoming more and
more local with increasing values of k.

t : X → Y , μX and μY should be preserved. For the analysis and visualization of
the distortion, Ovsjanikov et al. [12] and Rustamov et al. [13] proposed to use a
real valued function w : Y → R which will be used for mapping distortions on Y
and w ◦ t for X. We have chosen area-distortion similar to [13] as the preferred
measure of distortion.

It is proved in [12], that the optimal w can be derived by w∗
k = φN

1...kw
where φN

1...k contains the first k eigenfunctions of the surface Laplacian operator
and w is the right singular vector corresponding to the largest singular value of
C. In addition, the scalars Sk has the ability to quantify the distortion at the
various scales k. It is interesting to note that this technique does not place any
assumptions on the geometry or topology of the function w, but provides a scale
parameter k, which is more intuitive for understanding the scales of distortion.
Large values of k allow for highly localized distortions, whereas medium and
small values of k enforce the indicator functions to be more smooth resulting
in the determination of globally problematic regions. In particular, the singular
values C associated with each singular vector, indicates the amount of distortion
introduced by the map at that particular scale.

3.3 Supervised Learning of Shape Distortions

We propose to learn the areas where the map has induced significant distortion
between the End Systole and the End Diastole phases of a healthy versus dis-
eased subject. In particular, we have achieved this by learning singular values
associated with distortions at multiple scales concatenated with the difference
of overall surface area of endo and epicardium at ES and ED. We subtracted the
total area of endocardium at ED from the total are of endocardium at ES. We
repeated the same operation for epicardium and used both features. We have
chosen the vector of singular values ck ∈ C as the feature vector representing
the distortion between ES and ED. The STACOM 2015 dataset contains labeled
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Fig. 2. The region where the map has distorted the area measure the most, at various
scales k for an exemplary diseased subject.

dataset of 100 healthy and 100 diseased subjects, which is used for training a
decision boundary of Support Vector Machine (SVM). During testing, similar
feature selection procedure is used, followed by evaluation using the learnt deci-
sion boundary to consider whether the given meshes are from a normal subject
or from a diseased one.

4 Implementation

We have employed a two step strategy for practical implementation of the prob-
lem, due to computational complexity of the method described in Sect. 3. In
particular, we have adopted a Active Shape Model (ASM) [4] to resolve the rel-
atively easier test cases. Eight different ASMs are trained on training datasets,
four for normal and four for diseased cases. For either normal or diseased case,
one ASM is trained for ES epi and endocardium, as well as ED epi and endo-
cardium. For the test cases, the representative class of each surface is determined
by finding the lower L2 error across all points. The first screening of test cases
results in determination of a class if 3 of the 4 shapes agree to a common class.
Otherwise the test case is evaluated using the method described in Sect. 3.

We have used the Mesh Laplacian implementation of [15], for computing the
basis functions. These basis functions are used for the functional map calcula-
tion and analysis. It is important to note that because of the orthonormality
of our chosen basis, matrix of area-based inner product reduces to the identity
matrix. Surface area of LV endo and epicardium meshes are calculated using the
implementation of [6]. The supervised learning using SVM is performed using
the libSVM implementation of Chang et al. [3]. In particular we have chosen a
polynomial kernel of the following form (γu′v + c)d, where γ = 2, c = 2 and
d = 5.
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Fig. 3. The region where the map has distorted the area measure the most over the
whole population of healthy subjects from STACOM 2015 training dataset, at various
scales k.

5 Results

5.1 Data

Here we use the data available through the STACOM 2015 challenge for model-
ing the statistical shape of the left ventricle (LV). The STACOM training dataset
contains 100 cases with myocardial infarction and another 100 healthy cases. The
myocardial infarction cases are acquired through DETERMINE and the healthy
ones through MESA [5]. In particular, the MESA study protocol ensured that
these subjects did not have physician-diagnosed heart attack, angina, stroke,
heart failure of atrial fibrillation, or undergone procedures related to cardio-
vascular disease. The testing set contains another set of 100 healthy and 100
diseased cases, for which the disease status is unknown to us and is evaluated
by the co-organizers.

5.2 Qualitative Evaluation

To evaluate our preliminary results qualitatively, we have chosen to visualize the
multi-scale distortion measure between ES and ED phases of a randomly sam-
pled healthy and diseased subject as shown in Figs. 1 and 2. Since this yielded
promising results, as evidenced from the multi-scale nature of the distortion, we
have tried to further characterize population-level distortions between ES and
ED phase of healthy and diseased subjects. In Figs. 3 and 4, population-level
multiscale distortions of healthy and diseased subject respectively, are projected
on two exemplary surfaces to visualize the differences. Different patterns of dis-
tortion is quite evident from Figs. 3 and 4, which motivates us for further quan-
titative analysis using machine learning techniques and check the accuracy of
the proposed method in the STACOM 2015 challenge.
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Fig. 4. The region where the map has distorted the area measure the most over the
whole population of diseased subjects from STACOM 2015 training dataset, at various
scales k.

5.3 Quantitative Evaluation

We have evaluated our algorithm on the training data set to estimate the per-
formance. We have used a 10-fold cross-validation to evaluate the performance
of the method and we have reached an average accuracy of 95.67 and a standard
deviation of 1.26.

Furthermore, we have built a set-up to estimate the effect of number of
training subjects on the accuracy. Figure 5 shows the influence of varying the
total number of training subjects n, equally divided between normal and diseased
cases, from n = 20 to n = 180 with the rest as testing subjects. The training
samples are sampled randomly and for each n, we have run 50 experiments
and reported the mean accuracy. It can be observed that increasing number of
training subjects enable the algorithm to reach higher training accuracy.

Fig. 5. The influence of the number of training subjects on accuracy
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6 Discussions and Conclusion

Myocardial infarction results in a significant change of LV geometry due to the
cardiac remodeling phenomenon. In this paper, we have proposed a framework
to effectively differentiate the distortion between ES and ED phase of a healthy
LV and diseased LV. Our proposed multi-scale approach is capable of describing
distortions from global to local scale, which we have exploited in a supervised
learning framework for the STACOM 2015 challenge. The preliminary visual-
izations and quantitative results suggest a population-wide common distortion
pattern for healthy LVs, which can be utilized further in larger clinical studies.
In this work, we have not considered the clinical quantities for describing cardiac
remodeling such as Wall Thickness, Conicity, Sphericity etc. In the future, these
quantities can be easily incorporated into the feature vector, to enhance the
quantitative performance. Finally, the quantification of the distortion using sin-
gular values enable the possibility to extend this method for longitudinal studies
of diseased LVs, and quantification of distortion over time.
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