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ABSTRACT 

The compression of video can reduce the accuracy of automated 
tracking algorithms. This is problematic for centralized applications 
such as transportation surveillance systems, where remotely cap­
tured and compressed video is transmitted to a central location for 
tracking. In typical systems, the majority of communications band­
width is spent on representing events such as capture noise or local 
changes to lighting. We propose a pre- and post-processing algo­
rithm that identifies and removes such events of low tracking interest, 
significantly reducing the bitrate required to transmit remotely cap­
tured video while maintaining comparable tracking accuracy. Using 
the H.264/AVC video coding standard and a commonly used state­
of-the-art tracker we show that our algorithm allows for up to 90% 
bitrate savings while maintaining comparable tracking accuracy. 

Index Terms- Urban traffic video tracking, transportation, 
video compression, preprocessing, postprocessing 

1. INTRODUCTION 

Non-intrusive video imaging sensors are commonly used in traffic 
monitoring and surveillance. For some applications it is necessary to 
transmit the video data over communication links. However, due to 
increased bitrate requirements this assumes either expensive wired 
communication links or that the video data is being heavily com­
pressed to not exceed the allowed communications bandwidth. Cur­
rent transportation video solutions utilize older video compression 
standards and require dedicated wired communication lines. Re­
cently H.264/AVC has started to be used in transportation applica­
tions, significantly reducing the link bandwidth requirement. How­
ever, most video compression algorithms are not optimized for traffic 
video data, nor do they take into account the possible data analysis 
that will follow at the control center. As a result of compression 
the visual quality of the data will suffer, but more importantly the 
tracking accuracy and efficiency are severely affected. 

The field of video object tracking is quite active, with various so­
lutions offering strength/weakness combinations suitable for differ­
ent applications. For urban traffic video tracking most applications 
involve a background subtraction component for target acquisition 
such as the one developed in [1], and an inter-frame object associa­
tion component such as those developed in [2, 3]. 

Most tracking algorithm models account only for the native 
statistics of video objects, and as a result distortion of these statis­
tics by noise sources such as compression severely degrade their 
accuracy. In [4] a lightweight encoder-embedded LMMSE filtering 
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algorithm is presented, showing significant success in maximizing 
post-compression video PSNR. However, the gains are in the domain 
of fidelity rather than automated trackability. In [5], special consid­
eration is given to post-compression tracking, and a novel method 
of spatially concentrating bitrate via a Region of Interest derived 
according to pixel intensity statistics is presented. While shown to 
be effective in reducing bitrate requirements, this method does not 
attempt to limit frame-by-frame variation of low tracking interest 
but concentrates on defining a spatial region where interesting events 
commonly occur. 

Many video compression systems today use Block-based Mo­
tion Compensation, where temporal redundancy is eliminated via 
the use of block motion vectors and frequency-transformed residu­
als. For typical traffic surveillance systems the camera is stationary, 
and the majority of bitrate is spent representing temporal changes to 
the scene such as capture noise or small changes to lighting. Not 
only are these changes costly to encode, but in most systems their 
imperfect compression is highly misleading to tracking algorithms. 

In this work we present an algorithm that identifies and filters out 
such events in video, thereby allowing for compression resources to 
be focused temporally on events of tracking interest. Given the spe­
cial requirements of centrally controlled traffic surveillance systems, 
it is necessary to limit resource requirements, such as memory and 
processing power, for any technique seeking to counter the effects of 
video distortion on tracking. The algorithm presented herein is low 
in complexity and is readily deployable as a simple modular add-on 
to low processing power remote nodes of centralized traffic video 
systems. It makes no assumptions about the operation of the video 
encoder (such as its motion estimation or rate control methods) and 
is thus suitable for use in a variety of systems. The resulting bit­
streams are standard-compliant, thereby guaranteeing interoperabil­
ity with other standard-compliant systems. 

In Section 2 we discuss the effects of video compression on the 
efficiency of tracking algorithms, focusing on the distortion of fea­
tures commonly used in real-time video object tracking. In Section 3 
we propose our method of bitrate concentration on critical temporal 
events, for which we show experimental results in Section 4. Finally 
we present concluding remarks in Section 5. 

2. COMPRESSION DISTORTION OF TRACKING 

While the active field of video object tracking contains a large variety 
of algorithms, most of these systems share some fundamental con­
cepts. In reviews of object tracking presented in [6] it is shown that 
most algorithms operate by modeling and segmenting foreground 
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and background objects. Once the segmentation is complete and the 
targets located, the targets are tracked across time based on key fea­
tures such as spatial edges, color histograms and detected motion 
boundaries. The segmentation models and key features for a partic­
ular tracking application are chosen based on the application's goals 
and parameters. For example, color histograms can be useful when 
tracking highway vehicle activity during the day, but less useful un­
der low light conditions at night. In [5] we discuss the effects of 
video compression especially debilitating for tracking algorithms. 

In order to optimize for tracking quality a metric to measure 
tracking accuracy is required. In [7] a state-of-the-art review for 
video surveillance performance metrics is presented. Due to their 

pertinence in traffic surveillance for our work we choose the Over­
lap, Precision and Sensitivity metrics presented therein. Overlap 

(OLAP) is defined in terms of the ratio of the intersection and union 
of the Ground Truth (GT) and Algorithm Result (AR) objects, 

OLAP 
_ GTi n ARi 
- GTi UARi' 

(I) 

where GTi are the segmented objects tracked in uncompressed 
video, the ARi those tracked in compressed video, n the intersec­
tion of the two regions and U their union. Precision (PREC) is 
defined in terms of the average number of True Positives (TPs) and 
False Positives (FPs) per frame as 

PREC = TJ5 
TP+FP' (2) 

where TPs are objects present in both the GT and AR, while FPs are 
objects present in the AR but not in the GT. An FP is flagged if an 
object detected in the AR does not overlap an equivalent object in 
the GT (i.e. OLAP(ARi, GTi) = 0). Sensitivity (SENS) is defined 
in terms of TPs and False Negatives (FNs) as 

SENS = TJ5 
TP+FN' (3) 

where FNs are objects present in the GT but not in the AR. An FN is 
flagged if an object detected in the GT does not overlap an equivalent 
object in the AR (i.e. OLAP(GTi,ARi) = 0). We define the 
aggregate tracking accuracy A as 

A (0: * OLAP) + (/3 * PREC) + (-y * SENS), (4) 

where 0:, /3 and '"Yare weighting coefficients. Given that OLAP, 
SENS, PREC are all in the range [0, I], no normalization of A is 
necessary as long as 0: + /3 + '"Y = 1. 

3. PROPOSED METHOD 

The proposed algorithm seeks to minimize the bitrate required for a 
given level of tracking accuracy. At reasonable compression ratios 
frame-to-frame variations to pixel intensity, such as due to capture 
noise or local changes to lighting, can be imperfectly represented 
in compressed video. For example, such variation may be sampled 
sparsely over time rather than on every frame, leading to seemingly 
random block refreshes in the decoded video. Such changes may 
be interpreted as significant motion and thus be highly misleading 
to many trackers. Our algorithm seeks to suppress such changes in 
compressed video, thereby reducing both the required bitrate and 
post-compression tracking inaccuracies. 

Our algorithm operates in two distinct parts: (a) we model, de­
tect, and remove temporal events of low tracking interest as a pre­
process to compression, and (b) after decoding of the video at the 
receiver we use the estimated modeling parameters from part (a) to 
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Fig. 1. Sample estimation process for nt at t = 18 of the "Golf" 
sequence. Here shown are (a) at, (b) fit, (c) Mt and (d) Vt. 

synthesize and insert noise into the video prior to tracking. Part (a) 
aims to minimize the bitrate requirement, while part (b) aims to im­
prove post-compression tracking results. 

We define temporal variations to pixel intensity of low tracking 
interest as noise. This noise is modeled for each frame t as a Gaus­
sian process with zero mean and standard deviation nt. We assert 
that for traffic surveillance video, the majority of temporal variation 
on each frame will be due to noise. We define at, the standard devi­
ation of each pixel's intensity over the past buffered B frames. Since 
we expect the majority of values in at to be due to noise, we can es­
timate the noise standard deviation nt by taking the mode of values 
of at, i.e. nt = mode(at) . In order to generate a mask Mt, which is 
a bitmap of pixels in frame t whose variation is of tracking interest, 
we define fit, the absolute difference in pixel intensities between 
frames t and t - 1. Pixels in Mt where fit exceeds nt multiplied by 
a confidence coefficient C are marked as I, while the rest are marked 
as O. Therefore for the video sequence v, the estimated high tracking 
interest video v is iteratively computed as: 

at std([Vt-B ... Vt] ) (5) 

nt mode( vee(at) ) (6) 

fit Vt - Vt-l (7) 

Mt lfitl > C*nt (8) 

vo Vo 
Vt Mt * Vt + Mt * Vt-l V't>O. (9) 

In Eq. 5, std is the per-pixel standard deviation, computed over 
the past B frames. In Eq. 6, mode and vee are respectively the 
histogram mode and matrix vectorization operations. In Eq. 8, II 
is the absolute value operation, and Mt is the logical inverse of the 
bitmap Mt. Refer to Fig. I for a sample iteration. In the figure, 
sample values are shown for at (a) and fit (b). The threshold C * nt 
is used to derive the mask Mt shown in (c), and finally the Vt shown 
in (d). Note that the encoder receives only the filtered input Vt. 

The derivation of the coefficient C is done based on the desired 
confidence interval CJ. Since we model noise as Gaussian, its dis­
tribution is subject to the cumulative Gaussian distribution function 
<1>. Refer to [8] for further discussion on the derivation and use of 

<I> in this context. Using <1>, we express the probability of any given 
pixel variation being due to noise as the probability that it belongs to 
a zero-mean Gaussian distribution with standard deviation nt: 

CJ = Prob(lfiti < C * nt) = <I>(C) - <1>( -C). (10) 



Basically, the relationship being used here is that for any given Gaus­
sian distribution, a certain percentage of all values are expected to lie 
within a given multiple of standard deviations from the mean. 

The higher C is set, the more likely it will be that pixel variations 
will be classified as noise. This will reduce the required bitrate R 
(less noise will be coded), increase the precision P REC (fewer false 
positives will occur due to miscoding of noise) but decrease the sen­
sitivity SENS (more false negatives will occur as more true motion 
is misclassified as noise and filtered out). For example, the values of 
C = [1,2,3] are expected to filter out [68. 26%,95. 45%,99. 74%] 
of Gaussian noise. However, the higher values of C will also mean 
that more actual motion is misclassified as noise and therefore erro­
neously filtered out. 

The value of C can be evaluated offline or via a table lookup to 
avoid the complexity of evaluating cI> online. Note that the estimated 
nt needs to be transmitted to the receiver for the second part of our 
algorithm - however, given that a single 32-bit number per frame 
is sufficient for this transmission, we will disregard the additional 
bitrate required by this operation. 

As described above, synthetic noise is reinserted into the decom­
pressed video as part of our algorithm. For each frame t randomly 
generated Gaussian noise with zero mean and standard deviation nt 
is added to the frame, clipping any resulting overflows due to dy­
namic range. The goal of this post-process is to restore the Gaussian 
temporal noise characteristics the video possessed prior to compres­
sion. Given that many tracking algorithms rely on noise modeling 
for background subtraction, this step is critical to allow such track­
ers to be able to tell actual foreground such as vehicles from pixel 
variations artificially introduced by compression. 

For video where multiple color components are available, our 
algorithm is applied independently to each component. While joint 
application to multiple components may improve the robustness of 
the algorithm, special care would have to be taken in this case where 
low-contrast scenes (such as in low-light or fog) may present a dis­
advantageous tradeoff between sensitivity and precision. 

The modifications we propose for our algorithm are completely 
modular and can be implemented as a pre- and post-processing 
add-on to any system with reasonable headroom. We impose no 
additional latency to the system, and the resulting bitstream is fully 
standard-compliant. The parameters for the algorithm are the buffer 
size B, which should be set as high as possible given memory 
and processing power constraints, and the confidence parameter C, 
which should be set based on the specific application requirements 
in terms of SENS and PREC. 

4. EXPERIMENTAL RESULTS 

To verify the gains possible with our algorithm a sample implemen­
tation was tested using multiple sequences with differing charac­

teristics such as viewing angle, quality and type of vehicle traffic 
observed. Details for the sample implementation and experimental 
procedure in addition to test results are presented below. 

The video compression experiments presented herein were per­
formed using the open-source H.264/AVC encoder x264 [9] and the 
JM 16.0 H.264/AVC reference decoder. The open-source OpenC V 
[10] "blobtrack" module was used as the object tracker, where the 
Mean Shift object tracking algorithm presented in [2] was imple­
mented. Prior to tracking, the areas in the scene of interest (such as 
roads or sidewalks) were manually segmented. This was done to bet­
ter simulate state-of-the-art traffic surveillance applications, which 
would concentrate on tracking vehicles and pedestrians as opposed 
to other objects such as trees or clouds. 
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Percentage Reduction in DFD 

C=l C=2 C=3 

Golf 70.53 83.73 95.23 
Camera6 53.33 80.34 88.79 
dLpassat 83.14 89.61 91.19 

Table 1. The reduction in DFD energy due to noise suppres­
sion using C = {I, 2, 3}. The percentage gain is computed by 
1 - Ivt-vt-11 V t > O. Ivt vt_11 

In order to establish a baseline for tracking performance an un­
modified H.264 encoder was run across a range of bitrates, where the 
bitrate was increased by coarsening the Quantization Parameter (QP) 
for each operating point. The bitstreams were then decoded to get 
reconstructed video, which after application of the manual segmen­
tation mask was used for tracking. Accuracy analysis was performed 
based on Eq. 4. In order to keep the results "application neutral," e.g. 
without prioritizing precision over sensitivity, equal weights for the 
the accuracy components were used (0: = fJ = "( = �). A causal 
buffer of size B = 7 frames was used, which required a reasonable 
amount of memory available on most consumer-grade applications. 
Since these buffered frames are not modified, they can also be used 
as the frame buffer of the video system, thereby avoiding additional 
memory requirements for our algorithm. For our experiments 20 
seconds of each sequence was processed at 30Hz. 

To test our algorithm against the baseline, we perform our de­
scribed pre-processing (noise estimation and suppression) prior to 
encoding, feeding v instead of the original v into the encoder. After 
the bitstream is decoded, we perform post-processing by using the 
estimated nt to generate and insert random noise into the video prior 
to tracking. For the results presented herein C = 2 and C = 3 were 
used, so that on average respectively 95.45% and 99.74% of noise 
was expected to be filtered. With our "application neutral" tracking 
accuracy definition of 0: = fJ = "( = �, we found that a value of 
C = 2 usually performs slightly better than C = 3. Both sets of 
results are shown here in order to illustrate sensitivity to C. 

The following videos were used for testing. The "Golf" se­
quence (720x480) was shot on DV tape and is a relatively high fi­
delity source, showing a local road intersection with steady non-rush 
traffic. As part of the scene there are trees and parking lots for of­
fice buildings and a strip mall. The "Camera6" sequence (640x480) 
was used under the NGSIM license courtesy of the US FHWA. It 
shows an intersection with light traffic, with trees swaying in the 
wind and buildings casting reflections of passing cars as part of the 
scene. This video was MPEG4 intra-only compressed during ac­
quisition and is thus significantly noisier than the "Golf" sequence. 
The "dLpassat" sequence (768x576) was made available courtesy 
of KOGSIIAKS Universitiit Karlsruhe. It shows a busy intersection 
with steady traffic interrupted by a traffic signal and a light urban rail 
crossing. This content is uncompressed luminance-only with signif­
icant capture noise as well as global illumination changes. 

As discussed herein, most of the frame to frame changes to pixel 
intensity for stationary-camera video content are going to be due to 
noise. Our algorithm reduces bitrate by suppressing those changes 
of low tracking interest. In Table 1 the percentage reduction in the 
displaced frame difference (DFD), i.e. between IVt -Vt-ll and IVt­
Vt-ll V t > 0, is shown. As expected here we see that most of the 
DFD is suppressed as a result of the filtering, with more of it being 
suppressed the higher C is set. We do not expect values presented in 
Tab. 1 corresponding to C = [1,2,3] to be exactly equal to the cI>­
based values [68.26%, 95.45%, 99.74%]. This is primarily because 
noise is not the only contributor to the DFD, as interesting motion 



such as vehicles and pedestrians are also part of it, and therefore 
not all of the DFD is subject to filtering. Secondarily, given that we 
estimate nt on each frame, the accuracy of how much of the DFD 
we suppress is limited by how well we estimate nt. 

Refer to Fig. 2 for algorithm results using the "Golf" sequence, 
where we compare the rate-accuracy curves for default compression 
vs. our algorithm using C = 2 and C = 3. Note that despite 
the original content being high-fidelity and thus having litte noise, 
consistent bitrate gains from 60% to 90% are possible using our al­
gorithm. Refer to Fig. 3 for results using the "Camera6" sequence. 
Note that once again consistent bitrate gains from 60% to over 90% 

are possible using our algorithm. Refer to Fig. 4 for results using the 

"dLpassat" sequence. Observe that here as well consistent bitrate 
gains from 70% to 90% are possible using our algorithm. 

Given that the second part of our algorithm involves random 
generation of Gaussian noise, there will be some variability across 
given realizations of randomly generated noise, and therefore possi­
bly in the subsequent tracking accuracy. The experimental accuracy 
values presented herein represent the mean of 16 experiments, where 
each time a different realization of random noise was inserted as a 
post-process. The standard deviation of the accuracy across all the 
experiments was in the interval [0.005, 0.015], which is reasonable 
for real-world systems in the operational predictability sense. 

5. CONCLUSION 

We have proposed a novel method of reducing compressed video bi­
trate required for a given level of tracking accuracy through filtering 
of temporal events with low tracking utility. We used statistics based 
on pixel-level intensity changes over time to estimate and suppress 
such events prior to compression, and used our estimates to synthe­
size noise simulating such events prior to tracking. We have demon­
strated using a common tracker that our algorithm allows for up to 
90% bitrate savings while maintaining comparable tracking quality. 
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Fig. 2. Algorithm results for the "Golf" sequence (720x480). 
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