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 Introduction [1:30pm-2:30pm]

 What? Why? How?

 Understanding and Intuition

 DEMO - MONAI Generative Models

Coding tutorial on DDPM

 Advanced Topics [2:30pm-3:30pm]

 Sampling Strategies

 Inference-time Conditioning

 Training-time Conditioning

 DEMO - MONAI Generative Models

DDIM Inversion + Classifier-free guidance

Tutorial Schedule
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 Applications in Medical Imaging [4pm-5pm]
 Synthesis

 Reconstruction

 Segmentation

 Registration

 Inpainting

 Anomaly Detection

 Miscellaneous

 Panel Discussion [5pm-6pm]

https://github.com/Project-MONAI/GenerativeModels/tree/main/tutorials/generative/2d_ddpm
https://github.com/Project-MONAI/GenerativeModels/tree/main/tutorials/generative/classifier_free_guidance


Diffusion Models

What? Why? How?
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What? Generative Models

𝑝𝜃 ∈ ℳ

Model family

𝒅( 𝑝𝑑𝑎𝑡𝑎, 𝑝𝜃)

Brain MRI

𝑖 ∈ {1,2, … , |𝐷|}

𝑥𝑖 ~ 𝑝𝑑𝑎𝑡𝑎

ℳ = {VAE, GAN, NF, Diffusion Models}
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What? Generative Models

𝑝𝜃 ∈ ℳ

Model family

Density Estimation

𝑝𝜃 𝑥

Sampling

𝑥𝑛𝑒𝑤 ∼ 𝑝𝜃

Unsupervised Representation Learning

𝑧 ← 𝑝𝜃(𝑥)



What? Generative models

6
Figure by Lilian Weng

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

likelihood-based models 

implicit generative models

Require 

• inductive bias to ensure a tractable 

normalizing constant for likelihood 

computation; or 

• surrogate objectives to approximate 

ML training. 

Require adversarial training:

• notoriously unstable; leading to 

• mode collapse

diffusion models bypass both with neat tricks



Sampling Trilemma

7

Xiao, Z., Kreis, K., & Vahdat, A. (2021). Tackling the generative learning trilemma with denoising diffusion gans. ICLR



Why? Unprecedented Quality

8
Images generated by these engines or taken from 

respective blogs. Copyright, unclear.

“A dystopian male face made 

of volcanic lava, mysterious, 

image containing secret 

codes”

“…

Tribe taking a 

selfie …”

“realistic photo of a 

cybernetic Eagle”

Images from ideogram.ai                 and Midjourney 

1.Realism

2.Control

3.Prior



Why? Community Push
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Companies
Big models and data

Open-Source
Ease of Use



Why? Medical Imaging Popularity

10

Kazerouni, Amirhossein, et al. "Diffusion models in medical imaging: A comprehensive survey." Medical Image Analysis (2023): 102846.



Why? Medical Imaging Applications

11

Kazerouni, Amirhossein, et al. "Diffusion models in medical imaging: A comprehensive survey." Medical Image Analysis (2023): 102846.

Realism PriorControl



How? Training by Denoising

NN𝜶𝒕

𝒕
𝑇0

MSE

𝑥0

𝜖

𝜖 ~𝒩 0, 𝕀
𝑡 ~ 𝒰(0, 𝑇)

Convex 

Combination
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How? Inference

NN+

-

𝒕
𝑇0

sample(      )
𝑥0
𝑥𝑇

Trained Model

How the input can be a 

step closer to an image?



Understanding and Intuition
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Score Function

15

log 𝑝𝜃 x = log 𝑒−𝑓𝜃(𝑥) − log 𝑍𝜃

𝑝𝜃 x = 𝑒−𝑓𝜃(𝑥)

𝑍𝜃

𝛻x log 𝑝𝜃 x = −𝛻x𝑓𝜃(𝑥) − 𝛻x log 𝑍𝜃

0

Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

Mixture of two Gaussians 

Score function (the vector field)

Density function (contours)

𝝐𝜽
How to learn it?



Denoising Score Matching
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𝔼𝑝 x 𝝐𝜽(x) − 𝛻x log 𝑝θ x
𝟐

𝟐

Diffusion Model Score 𝑝𝑡 x𝑡 | x ≈ 𝑝𝑑𝑎𝑡𝑎 x

𝑝𝑡 x𝑡 | x = 𝒩 α𝑡x , 1 − α𝑡 𝚰

x𝑡 = α𝑡 x + 1 − α𝑡 𝜖 , 𝜖 ~𝒩(0, 𝚰)

Gaussian is a common perturbation

𝔼𝑝 x 𝝐𝜽(x) − 𝛻x log 𝑝𝑡 x𝑡 | x 𝟐
𝟐

Forward Process

Vincent, Pascal. "A connection between score matching and denoising autoencoders." Neural computation 23.7 (2011): 1661-1674.

x𝑡−x

𝜎𝑡
2

How to learn the score?



Learning the Score

17

Vincent, Pascal. "A connection between score matching and denoising autoencoders." Neural computation 23.7 (2011): 1661-1674.

𝔼𝑝 x 𝝐𝜽(x) − 𝛻x log 𝑝𝑡 x𝑡 | x 𝟐
𝟐

Image from blog post by Yang Song https://yang-song.net/blog/2021/score/



Perturbation at many scales

18
Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

Learning in low density regions



Diffusion Models Learn the Gradient

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning 

using nonequilibrium thermodynamics. In International Conference on Machine Learning.

𝛻𝑥𝑙𝑜𝑔 p(x)

19
Figure by the author of the papers. 

Copyright rests with the authors.



Fourier Transform

20

x𝑡 = α𝑡 x + 1 − α𝑡 𝜖 , 𝜖 ~𝒩(0, 𝚰)

ℱ x𝑡 = α𝑡ℱ(x) + 1 − α𝑡ℱ(𝜖)

Slide inspired in CVPRs 2022 tutorial on diffusion models

Fourier Transform Small 𝑡

Big 𝑡



Gaussian Perturbation?

21

[1] Daras, Giannis, et al. "Soft diffusion: Score matching for general corruptions." arXiv preprint arXiv:2209.05442 (2022).

[2] Bansal, Arpit, et al. "Cold diffusion: Inverting arbitrary image transforms without noise." arXiv preprint arXiv:2208.09392 (2022).

[3] Kascenas, Antanas, et al. "The role of noise in denoising models for anomaly detection in medical images." Medical Image Analysis (2023): 102963.



Diffusion and Differential Equations

22
Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

 Perturbation process is a Stochastic Differential Equation (SDE)

 From complex to simple

 Allow different values for SDE modelling



Reversing the Process is Generation

23
Image from blog post by Yang Song https://yang-song.net/blog/2021/score/

 Samplers are discrete solutions of the reverse-time SDE



The Design Space

24
Karras, T., Aittala, M., Aila, T., & Laine, S. (2022). Elucidating the design space of diffusion-based generative models. NeurIPs



Architecture – Reusing the classics,
and the SoTA

Jonathan Ho, Ajay Jain, Pieter Abbeel (2020) Denoising Diffusion Probabilistic Models. NeuriPS

Unet!

Or transformers

Or VQ-VAEs

Or…

25
Figure by the author of the papers. 

Copyright rests with the authors.



DEMO

26

Allows researchers and developers to easily train, evaluate, 

and deploy generative models on medical imaging.



 State-of-the-art models

 Losses and supporting classes to 
train models

 Evaluation metrics 

 Tutorials

 Pre-trained models

Features

27



U-Net Architecture
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from generative.networks.nets import DiffusionModelUNet

model = DiffusionModelUNet(
spatial_dims=3,
in_channels=1,
out_channels=1,
num_channels=[256, 256, 512],
attention_levels=[False, False, True],
num_head_channels=[0, 0, 512],
num_res_blocks=2,

)



Noise Schedulers

29

from generative.networks.schedulers

import DDPMScheduler

scheduler = DDPMScheduler(

num_train_timesteps=1000,

beta_schedule=“scaled_linear",

beta_start=0.0005,

beta_end=0.0195,

)



3D - Preprocessing

30

from monai import transforms

from monai.apps import DecathlonDataset

from monai.data import DataLoader

train_transform = transforms.Compose(

[

transforms.LoadImaged(keys=["image"]),

transforms.Lambdad(keys=["image“], func=lambda x: x[:, :, :, 1]),

transforms.AddChanneld(keys=["image"]),

transforms.ScaleIntensityd(keys=["image"]),

transforms.CenterSpatialCropd(keys=["image"], roi_size=[160, 200, 155]),

transforms.Resized(keys=["image"], spatial_size=(32, 40, 32)),

]

)

train_ds = DecathlonDataset(

root_dir="./data", task="Task01_BrainTumour", transform=train_transform, section="training", download=True

)

train_loader = DataLoader(train_ds, batch_size=8, shuffle=True, num_workers=8, persistent_workers=True)



Training

31

…

for batch in train_loader:

model.train()

images = batch["image"].to(device)

optimizer.zero_grad(set_to_none=True)

noise = torch.randn_like(images).to(device)

timesteps = torch.randint(0, scheduler.num_train_timesteps,(images.shape[0],))

noisy_image = scheduler.add_noise(original_samples=images,

noise=noise,

timesteps=timesteps)

noise_pred = model(x=noisy_image, timesteps=timesteps)

loss = F.mse_loss(noise_pred.float(), noise.float())

…



Sampling Images

32

model.eval()

noise = torch.randn((1, 1, 32, 40, 32)) # BS, Channels, 3D

scheduler.set_timesteps(num_inference_steps=1000)

for t in iter(scheduler.timesteps):

model_output = model(noise, timesteps=(t,))

noise, _ = scheduler.step(model_output, t, noise)

image = noise
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Timestep [t]t=1000 t=0



Part 2 – Advanced Topics

• Sampling Strategies

• Conditioning Mechanisms

"mouse"
Diffusion 

Model

34



• The noising process 𝑞 is defined by a sequence of normal distributions,

with forward process variances 𝛽1, … , 𝛽𝑇. 

Basic Idea of Denoising Diffusion Models

remove noise
… …

𝑥0 𝑥1 𝑥2 𝑥𝑇 𝑥1 𝑥0

Noising process 𝑞 Denoising process 𝑝𝜃

• The denoising process 𝑝𝜃 is learned by the model: 

• For this, we need to predict 𝜇𝜃 and 𝛴𝜃.

35



Training Overview

• We choose a random step 𝑡 ∈ {0,1, … , 𝑇}.

• We add 𝑡 steps of noise to our input image 𝑥0, and obtain a noisy image 𝑥𝑡 .

• Our model predicts the noise pattern 𝜖𝜃 that needs to be subtracted from 𝑥𝑡, to predict a slightly

denoised 𝑥𝑡−1.

U-Net

MSE loss

add noise

36
36

36



Fake Image Generation

37

𝑥𝑇−1

𝑥0

…

𝑥𝑇~𝑁 0, 𝐈

𝑥𝑇−2

synthetic image

U-Net

Random component



DDPM Scheduler

38



Schedulers: How to Accelerate Sampling?

"Denoising diffusion probabilistic 

models (DDPMs) have achieved high 

quality image generation, yet they 

require simulating a Markov chain for 

many steps in order to produce a 

sample."

We need to make the 

generation process faster.



From DDPMs to DDIMs

DDPM sampling scheme

DDIM sampling scheme

The training process stays the same.

We remove the random component

Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502. 40



• The connection to ordinary differential equations (ODEs) can be seen when we rewrite the 

DDIM denoising step as

• This can be interpreted as the Euler approximation of an ODE.

• We can speed up the generation process by choosing a larger step size.

• DDIM is a probability flow ODE from a SDE [1].

Faster, but less accurate

prediction
previous 

value
step size derivative

41

An Excursion into ODEs

[1] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.



42

• By skipping 𝑘 steps, we have a step size of 𝑘Δ𝑡.

• Sampling is 𝑘 times faster.

• We trade image quality for speed.

Total amount of steps

DDIM Accelerated Sampling



Various Schedulers...

• Choosing a different solver for the 

given ODE can improve speed and 

image quality.

• Other numerical approaches such 

as Heun's Method or Runge Kutta

solvers can be explored.

• Knowledge distillation techniques 

can be used for fast sampling.

43



Part 2 – Advanced Topics

• Sampling Strategies

• Conditioning Mechanisms

"mouse"
Diffusion 

Model



Conditioning

1. Inference-time

1. An inverse problem view

 Classifier guidance

2. DDIM inversion

 Interpolation

 Gradient guidance

2. Training-time

1. Scalar inputs

2. Text

3. Images

4. ControlNet

5. DreamBooth



Inverse Problem

• We consider two random variables 𝑥 and 𝑦.

• Suppose we know the forward process of generating 𝑦 from 𝑥, represented by the transition 

probability distribution 𝑝 𝑦 𝑥 .

• We aim to solve the inverse problem 𝑝(𝑥|𝑦).

• With the Bayes’ rule, we have

• Like in score-based models, we take the gradient of the log

This is known

(diffusion model 𝜖𝜃)
This is the condition

(classifier, …)

Image given the

condition
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𝐶 𝑖|𝑥Classifier

𝐶

𝛻𝑥𝐶 𝑖|𝑥

𝑥

Input image of class 𝑖

Saliency map for class 𝑖

𝐶 𝑥𝑡, 𝑡Classifier

𝐶

Time step 𝑡

Classifier

𝐶

𝑥𝑡

Example: Classifier Guidance

https://corochann.com/library-release-visualize-saliency-map-of-deep-neural-network-644/

We want a class-conditional diffusion model. We consider the gradient with respect to the input pixels.



Classifier Guidance

48Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

Diffusion 

Model
update

∗ 𝑠

We use the gradient to guide the generation process towards a desired class.

desired class 𝑖

Gradient guidance is not restricted to classification models. Other models 

(e.g., regression, segmentation, …) work just in the same way.



Classifier Guidance

49

goldfish

arctic fox

butterfly

African elephant

flamingo

tennis ball

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." Advances in neural information processing systems 34 (2021): 8780-8794.

cheeseburger

fountain

balloon

tabby cat

lorikeet

agaric



How can we preserve information?

50

We need to find a way to keep the information of 𝑥0.

We consider Denoising Diffusion Implicit Models (DDIMs).

• We add 𝐿 steps of noise to an input image 𝑥0.

• The smaller 𝐿, the less the image can be changed.

• The higher 𝐿, the more information is destroyed.

We might want to translate an image to another…



DDIM Inversion

51

• Under the DDIM sampling scheme, we remove the random component. 

• The connection to ordinary differential equations (ODEs) can be seen when we 

rewrite the denoising step as

• This can be interpreted as the Euler approximation of an ODE. 

• Given infinitely small steps t, the reversed ODE can then be solved with

Noise encoding

Noise decoding

Song, Jiaming, Chenlin Meng, and Stefano Ermon. "Denoising diffusion implicit models." arXiv preprint arXiv:2010.02502 (2020).



Image Interpolation

52

DDIM noise encoding

Linear Combination

(1-α)A+αB

DDIM noise decoding

0 1α

A B

Output

0.1 0.2 0.6 0.80.4 0.5



DDIM Inversion & Gradient Guidance

53

Example: age regression

Wolleb, Julia, et al. "The swiss army knife for image-to-image translation: Multi-task diffusion models." arXiv preprint arXiv:2204.02641 (2022).



Conditioning

1. Inference-time

1. An inverse problem view

 Classifier guidance

2. DDIM inversion

 Interpolation

 Gradient guidance

2. Training-time

1. Scalar inputs

2. Text

3. Images

4. ControlNet

5. DreamBooth



Scalar Conditioning via Spatial Addition

• We train a class-conditional 

diffusion model by including a 

class label 𝑐.

• We compute a class embedding, 

and pass it to the residual blocks 

by spatial addition.

Nichol, Alexander Quinn, and Prafulla Dhariwal. "Improved denoising diffusion probabilistic models." International Conference on Machine Learning. PMLR, 2021. 55



Scalar Conditioning via Adaptive Group Normalization

• Similar to StyleGAN, we add 

time and class information 

using a group normalization 

layer.

• This happens in all residual 

blocks of the U-Net.

56Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in neural information processing systems, 34, 8780-8794.



Image Conditioning through Concatenation

Saharia, Chitwan, et al. "Palette: Image-to-image diffusion models." ACM SIGGRAPH 2022 Conference Proceedings. 2022.

• For image generation of a fake image 𝑥, 

we can use a conditioning image 𝑦.

• This requires paired training.

• During training and sampling, we add 

information of the conditioning image 𝑥
through channel-wise concatenation.

𝑥𝑦

Colorization

Decompression

Uncropping

Inpainting

57



Image Conditioning through Concatenation

1 channel

3 channels

4 channels

3 channels

58



Palette: Image-to-Image Diffusion Models

Saharia, Chitwan, et al. "Palette: Image-to-image diffusion models." ACM SIGGRAPH 2022 Conference Proceedings. 2022.
59



• CLIP

• Dall-E

• Stable Diffusion

• Imagen

• ...

Text Conditioning

60
Saharia, Chitwan, et al. "Photorealistic text-to-image diffusion models with deep language understanding." Advances in Neural Information Processing 

Systems 35 (2022): 36479-36494.



Architecture - Conditioning

• Transformers Cross-Attention

• We use the text embedding to 

generate the key / value pair.

• We use the image embedding for 

the query.

Jaegle et al (2022). Perceiver IO: A General Architecture for Structured Inputs & Outputs. In ICL. 61



Text Conditioning

62
Hertz, Amir, et al. "Prompt-to-prompt image editing with cross attention control." arXiv preprint arXiv:2208.01626 (2022).

https://deepsense.ai/diffusion-models-in-practice-part-1-the-tools-of-the-trade/



Text Conditioning

63https://deepsense.ai/diffusion-models-in-practice-part-1-the-tools-of-the-trade/

https://deepsense.ai/diffusion-models-in-practice-part-1-the-tools-of-the-trade/


• We pretrain a diffusion model with text prompts.

• We freeze this model.

• We fine-tune a copy conditioned on 𝒄.

• We pass information through skip connections.

ControlNet

Zhang, Lvmin, Anyi Rao, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. 64



ControlNet

65

conditioning image



DreamBooth

66Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., & Aberman, K. (2023). Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. CVPR



DEMO

67

DDIM Inversion + Classifier-Free Guidance



DEMO - Conditioning

681. Sanchez et al (2022). What is Healthy? Generative Counterfactual Diffusion for Lesion Localization. DGM4MICCAI 2022. arXiv:2207.12268

1. Scalar Conditioning

2. Classifier-free guidance

3. DDIM Inversion



Conditional Unet

69



Conditional Unet

70

from generative.networks.nets import DiffusionModelUNet

model = DiffusionModelUNet(

…

num_channels=[256, 256, 512],

attention_levels=[False, True, True],

num_head_channels=[0, 256, 512],

with_conditioning=True,

cross_attention_dim=768,

)

…

noise_pred = model(x=noisy_image,

timesteps=timesteps,

context=conditioning)



Classifier-free Guidance

71

∅,

Ho, J., & Salimans, T. (2021). Classifier-Free Diffusion Guidance. In NeurIPS 2021 Workshop



Classifier-free Guidance

72

def classifier_free_guidance(noise, t, conditioning, w):

conditioning = torch.cat([torch.zeros(1), conditioning])
noise_input = torch.cat([noise] * 2)
model_output = model(noise_input, timesteps=t, context=conditioning)
noise_pred_uncond, noise_pred_text = model_output.chunk(2)

noise_pred = noise_pred_uncond + w * (noise_pred_text - noise_pred_uncond)

return noise_pred



Noise Schedulers

73

from generative.networks.schedulers import

DDIMScheduler

scheduler = DDIMScheduler(

num_train_timesteps=1000,

beta_schedule=“scaled_linear",

beta_start=0.0005,

beta_end=0.0195,

)



Training

74

…

for batch in train_loader:

# classes {1: unhealthy, 2: unhealthy}

images, classes = batch["image"], batch["classes"]

# dropout classes 15% of the time

classes = classes * (torch.rand_like(classes) > 0.15)

optimizer.zero_grad(set_to_none=True)

noise = torch.randn_like(images).to(device)

timesteps = torch.randint(0, scheduler.num_train_timesteps,(images.shape[0],))

noisy_image = scheduler.add_noise(original_samples=images,

noise=noise,

timesteps=timesteps,)

noise_pred = model(x=noisy_image, timesteps=timesteps, context=classes)

loss = F.mse_loss(noise_pred.float(), noise.float())

…



Sampling – DDIM Inversion + Guidance

75

L = 200
conditioning = torch.zeros(1)
scheduler.set_timesteps(num_inference_steps=1000)
current_img = batch["image"]
for t in range(L): # 0 -> L timesteps

with torch.no_grad():
model_output = model(current_img, timesteps=(t,), context=conditioning)

current_img, _ = scheduler.reversed_step(model_output, t, current_img)
latent_space_L = current_img

conditioning = torch.ones(1) # Manipulate to be healthy
noise = latent_space_L
for i in range(L):

t = L - i # t goes from L -> 0
noise_pred = classifier_free_guidance(noise, t, conditioning, w)
noise, _ = scheduler.step(noise_pred, t, noise)

image = noise



DEMO – Recap

761. Sanchez et al (2022). What is Healthy? Generative Counterfactual Diffusion for Lesion Localization. DGM4MICCAI 2022. arXiv:2207.12268

1. Scalar Conditioning

2. Classifier-free guidance

3. DDIM Inversion



Part 2 – Q&A



Part 3 – Medical Image Applications

Image Reconstruction
Image Registration

Image-to-Image Translation

Anomaly Detection

Image Synthesis

Image Segmentation

Inpainting

78



Image synthesis
Examples from the community

79



The simple setup of the problem

80

PAPERS

Pinaya et al (2022) Brain Imaging Generation with Latent Diffusion Models. MICCAI workshop

Kim et al. (2022) Diffusion Deformable Model for 4D Temporal Medical Image Generation. MICCAI

Khader et al. (2022) Medical Diffusion -- Denoising Diffusion Probabilistic Models for 3D Medical Image Generation. arXiv:2211.03364

Packhäuser et al. (2022) Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems. arXiv:2211.01323

Ali et al. (2022) Spot the fake lungs: Generating Synthetic Medical Images using Neural Diffusion Models. arXiv:2211.00902

Rouzrokh et al. (2022) Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological Report. arXiv:2210.12113

Chambon et al (2022) Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains. arXiv:2210.04133

Lyu et al. (2022) Conversion Between CT and MRI Images Using Diffusion and Score-Matching Models. arXiv:2209.12104

Ozbey et al. (2022) Unsupervised Medical Image Translation with Adversarial Diffusion Models. arXiv:2207.08208

Meng et al. (2022) A Novel Unified Conditional Score-based Generative Framework for Multi-modal Medical Image Completion. arXiv:2207.03430 Figure by Song et al ICLR 2022. 

Copyright rests with the authors.

Real Synthetic



Why? Medical Image Data is Scarce

81

Data Provider Data Users

Privacy concerns Limited data



Use of Synthetic Data

82

 Full “private” training

 Data augmentation

 Test-time augmentation

 Testing edge cases

Pinaya, Walter HL, et al. "Generative AI for Medical Imaging: extending the MONAI Framework." arXiv preprint arXiv:2307.15208 (2023).



Evaluation of Synthetic Data

83

 Realism

 Diversity

 Privacy

 Benchmark

Pinaya, Walter HL, et al. "Generative AI for Medical Imaging: extending the MONAI Framework." arXiv preprint arXiv:2307.15208 (2023).



• Latent Diffusion Models trained on 
data from UK Biobank (N = 31,740)
 T1 MRI brain images with 1 mm3 voxel 

size (160 × 224 × 160 voxels)

• Conditioned on covariates, such as:
- Age

- Gender

- Ventricular and Brain volumes 

Generating high-resolution 3D brain data

84
1. Pinaya et al (2022). Brain Imaging Generation with Latent Diffusion Models. DOI:10.1007/978-3-031-18576-2_12



Diffusion Model in the Latent Space

Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.



Fine-tuning Stable Diffusion
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Chambon, Pierre, et al. (2022) RoentGen: vision-language foundation model for chest x-ray generation. arXiv:2211.12737



Unlabelled Pre-training
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Ye, Jiarong, et al. (2023) Synthetic Augmentation with Large-scale Unconditional Pre-training. MICCAI



Generating Segmentation Masks

88
Fernandez, V.et al. (2022, September). Can segmentation models be trained with fully synthetically generated data? MICCAI Workshop SASHIMI



Generation of Anonymous Chest Radiographs

89
1. Packhäuser et al (2022). Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems. arXiv:2211.01323

Slides courtesy of Kai Packhäuser
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Fig. 1: Proposed privacy-enhancing image sampling strategy. Image taken from [1].

Fig. 3: Randomly selected images generated by the trained LDM. Images taken from [1].

Fig. 2: Comparison of the classification performance of CheXNet.
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Privacy Distillation
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Fernandez, V. et al (2023). Privacy Distillation: Reducing Re-identification Risk of Multimodal Diffusion Models. MICCAI Workshop DGM4MICCAI



Synthetic-to-real ratio of 10:1

Synthetic Image Augmentation

91

Sagers, Luke W., et al. (2023) Augmenting medical image classifiers with synthetic data from latent diffusion models. arXiv:2308.12453



Synthetic Data for Distribution Shifts

92

Ktena, Ira, et al. (2023) Generative models improve fairness of medical classifiers under distribution shifts. arXiv:2304.09218.



Synthesising Rare Samples 

93Frisch, Yannik, et al. (2023) Synthesising Rare Cataract Surgery Samples with Guided Diffusion Models. Miccai 2023.



Image reconstruction
Examples from the community
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Setup
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Figure2: Linear measurement processes for sparse-view CT (left) and undersampled MRI (right).

inmedical imaging applications. Without lossof generality, weassume that the linear operator A has
full rank, i.e., rankpA q“ minpn,mq“ m. Theresult below gives thealternative formulation of A :

Proposition 1. If rankpA q “ m, then thereexist an invertiblematrix T PRn ˆ n , and a diagonal
matrix ⇤ P t 0,1un ˆ n with t rp⇤q “ m, such that A “ Pp⇤qT . Here Pp⇤q P t 0,1um ˆ n is an
operator that, whenmultiplied with any vector a PRn , reduces its dimensionality to m by removing
each i -th element of a for i “ 1,2, ¨ ¨ ¨ , n if⇤i i “ 0.

We illustrate this decomposition for CT/MRI in Fig. 2. Many measurement processes in medical
imaging share thesameT , even if they correspond to different A . For example, T corresponds to
theRadon transform and Fourier transform in sparse-view CT and undersampledMRI respectively,
regardless of the number of measurements, i.e., CT projections and k-space downsampling ratios.
For both sparse-view CT reconstruction andmetal artifact removal for CT images, theoperator T is
theRadon transform (seeFig. 8). Intuitively, diagp⇤qcan beviewed asasubsampling mask on the
sinogram/k-space, andPp⇤qsubsamples thesinogram/k-space into an observation y with asmaller
sizeaccording to thissubsamplingmask. Inaddition, wenotethat T ´ 1 canbeefficiently implemented
with the inverseRadon transform or the inverseFourier transform in CT/MRI applications.

3.2 INCORPORATING A GIVEN OBSERVATION INTO AN UNCONDITIONAL SAMPLING PROCESS

Inwhat follows, weshow that thedecomposition inProposition 1providesanefficient way to generate
approximate samples from theconditional stochastic process t x t | yutPr0,1s with an unconditional

scoremodel s✓˚ px , tq. The basic idea is to “hijack” the unconditional sampling process of score-
based generativemodels to incorporate an observedmeasurement y .

Aswehavealready discussed, it is difficult to directly solve t x t | yutPr0,1s for sample generation.
To bypass thisdifficulty, wefirst consider a related stochastic process that ismuch easier to sample
from. Recall that p0tpx t | x0q“ N px t | ↵ptqx0,β2ptqI qwhere↵ptqand βptqcan bederived from
f ptqand gptq(Song et al., 2021). Given theunconditional stochastic process t x tutPr0,1s, wedefine

t y tutPr0,1s, where y t “ A x t ` ↵ptq✏. Unlike t x t | yutPr0,1s, the conditional stochastic process
t y t | yutPr0,1s is fully tractable. First, we have y0 “ A x0 ` ↵p0q✏“ A x0 ` ✏“ y . Since

p0tpx t | x0q“ N px t | ↵ptqx0,β2ptqI q, wehavex t “ ↵ptqx0 ` βptqz, where z PRn „ N p0, I q.
By definition, y t “ A x t ` ↵ptq✏, so wehavey t “ A p↵ptqx0 ` βptqzq` ↵ptq✏“ ↵ptqpy ´ ✏q`
βptqA z ` ↵ptq✏“ ↵ptqy ` βptqA z. Therefore, wecan easily generate asample ŷ t „ ptpy t | yq
by first drawing z „ N p0, I qand then computing ŷ t “ ↵ptqy ` βptqA z.

The key of our approach is to modify any existing iterative sampling algorithm designed for the
unconditional stochastic process t x tutPr0,1s so that thesamplesareconsistent with t y t | yutPr0,1s. In
general, an iterativesampling processof score-based generativemodels selects asequenceof time
steps t 0 “ t0 † t1 † ¨¨ ¨ † tN “ 1uand iterates according to

x̂ t i ´ 1 “ h p̂x t i , zi , s✓˚ p̂x t i , t i qq, i “ N,N ´ 1, ¨ ¨ ¨ ,1, (5)

where x̂ tN „ ⇡pxq, zi „ N p0, I q, and✓˚ denotes theparameters in an unconditional scoremodel
s✓˚ px , tq. Here the iteration function h takesanoisy sample x̂ t i and reduces the noise therein to
generate x̂ t i ´ 1 , using theunconditional scoremodel s✓˚ px , tq. For example, for theEuler-Maruyama
sampler detailed in Algorithm 1, this iteration function isgiven by

h p̂x t i , zi , s✓˚ p̂x t i , t i qq “ x̂ t i ´ f pt i q̂x t i {N ` gpt i q
2s✓˚ p̂x t i , t i q{N ` gpt i qzi {

?
N .

Samples obtained by this procedure t x̂ t i u
N
i “ 0 constitute an approximation of t x tutPr0,1s, where

the last sample x̂ t 0 can beviewed asan approximate sample from p0pxq. Most existing sampling

5

Figure by Song et al ICLR 2022. 
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Reconstruction with Data Consistency

96

Add a data consistency term at each sampling step:

An unconditional diffusion prior is trained on fully-sampled MR acquisitions



MRI Reconstruction with Adaptive Diffusion Priors

97
1. Gungor et al (2022). Adaptive Diffusion Priors for Accelerated MRI Reconstruction. arXiv:2207.05876. (https://github.com/icon-lab/AdaDiff)

Slides courtesy of Tolga Cukur



General Inverse Problems

98

Chung, et al. (2022). Diffusion posterior sampling for general noisy inverse problems. ICLR



Image registration
Examples from the community
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• To perform image registration along the 
continuous trajectory

• Diffusion network: To estimate a 
conditional score function

• Deformation network: To yield the 
registration fields & provide the 
deformed image

DiffuseMorph

100
1. Kim et al (2022). DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models. ECCV 2022

Slides courtesy of Boah Kim & Jong Chul Ye
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DiffuseMorph
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1. Kim et al (2022). DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models. ECCV 2022

Slides courtesy of Boah Kim & Jong Chul Ye

Methods Dice 𝐽𝜙 ≤ 0 (%)

Initial 0.642 (0.188) -

VM [1] 0.787 (0.113) 0.169 (0.109)

VM-diff [2] 0.794 (0.104) 0.291 (0.188)

Ours 0.802 (0.109) 0.161 (0.082)

• Intra-subject 3D cardiac MR image registration



Feature-wise Diffusion-Guided

102

Qin et al. (2023) FSDiffReg: Feature-

wise and Score-wise Diffusion-guided 

Unsupervised Deformable Image 

Registration for Cardiac Images.

Miccai 2023



Image-to-Image translation

103



Setup

104
Ozbey et al (2022). Unsupervised Medical Image Translation with Adversarial Diffusion Models. arXiv:2207.08208. (https://github.com/icon-lab/SynDiff)

Slides courtesy of Tolga Cukur

MRI Contrast Translation

MRI to CT Translation



SynDiff: an unsupervised diffusion model
for medical image translation

• An adversarial diffusive module maps fast 
source  target

• A non-diffusive module with cycle-consistency 
loss enables training on unpaired datasets

Medical Image Translation with Adversarial Diffusion

105
Ozbey et al (2022). Unsupervised Medical Image Translation with Adversarial Diffusion Models. arXiv:2207.08208. (https://github.com/icon-lab/SynDiff)

Slides courtesy of Tolga Cukur



Diffusion Models for Contrast Harmonization

Durrer, Alicia, et al. "Diffusion Models for Contrast Harmonization of Magnetic Resonance Images." arXiv preprint arXiv:2303.08189 (2023). 106
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Input Ground Truth Diffusion Model Output

107

Contrast Harmonization Results

Durrer, Alicia, et al. "Diffusion Models for Contrast Harmonization of Magnetic Resonance Images." arXiv preprint arXiv:2303.08189 (2023).



3D Shapes from 2D Microscopy Images

108

Waibel, D. J., Röell, E., Rieck, B., Giryes, R., & Marr, C. (2023, April). A diffusion model predicts 3d shapes from 2d microscopy images. In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.



3D with 2D model

109Zhu, Lingting, et al. (2023) Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D Brain MRI Synthesis. MICCAI



Inpainting
Examples from the community
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Point Cloud Diffusion Models for Implant Generation

• For automatic implant generation, we aim to complete a defective skull.

• The diffusion process is applied on a point cloud representation due to memory and computation time 

restrictions.

• We condition the generation process on the skull with a defect.

Friedrich, Paul, et al. "Point cloud diffusion models for automatic implant generation." MICCAI 2023. 111



Point Cloud Completion

112Friedrich, Paul, et al. "Point cloud diffusion models for automatic implant generation." MICCAI 2023.



Image segmentation
Examples from the community
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Setup

114

PAPERS

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022. arXiv:2112.03145

Guo et al (2022) Accelerating Diffusion Models via Pre-segmentation Diffusion Sampling for Medical Image Segmentation. arXiv:2210.17408

La Barbera et al. (2022) Anatomically constrained CT image translation for heterogeneous blood vessel segmentation. arXiv:2210.01713

Kim et al. (2022) Diffusion Adversarial Representation Learning for Self-supervised Vessel Segmentation. arXiv:2209.14566

Wu et al (2022) MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model. arXiv:2211.00611

Rahman, Aimon, et al. (2023) Ambiguous medical image segmentation using diffusion models. CVPR

Bieder et al. (2023) Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing. Medical Imaging with Deep Learning

Rousseau et al. (2023) Pre-Training with Diffusion models for Dental Radiography segmentation. Miccai 2023
Figure by Song et al ICLR 2022. 

Copyright rests with the authors.



115

(*)

Diffusion Models for Segmentation Mask Generation

Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022. arXiv:2112.03145

The anatomical information is added by concatenating the input images 𝑏 to the noisy segmentation mask 𝑥𝑏, 𝑡 in
every step t.

Diffusion 

Model



Generation of Segmentation Ensembles

116
Wolleb et al (2022). Diffusion Models for Implicit Image Segmentation Ensembles, MIDL 2022. arXiv:2112.03145



3D Segmentation with PatchDDM

117Bieder et al. (2023) Memory-Efficient 3D Denoising Diffusion Models for Medical Image Processing. MIDL

• We add a position encoding in all 3 spatial dimensions.

• Training is on patches only, and saves memory and training time.

• Inference runs over the whole 3D volume.



Ambiguous Segmentation

118Rahman, Aimon, et al. (2023) Ambiguous medical image segmentation using diffusion models. CVPR

• Ambiguity Modelling 

Network (AMN) models the 

distribution of ground truth 

masks given an input 

image.

• Ambiguity Controlling 

Network (ACN) models the 

noisy output from the 

diffusion model conditioning 

on an input image.



Segmentation with Diffusion Pre-training 

120Rousseau et al. (2023) Pre-Training with Diffusion models for Dental Radiography segmentation. MICCAI 2023



Anomaly detection
Examples from the community
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The simple setup of the problem

122

PAPERS

Sanchez et al. (2022) What is Healthy? Generative Counterfactual Diffusion for Lesion Localization. MICCAI workshop

Pinaya et al (2022) Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models. MICCAI

Wolleb et al (2022) Diffusion Models for Medical Anomaly Detection. MICCAI

Wyatt et al (2022) AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. CVPR workshop

Kascenas et al (2023) The role of noise in denoising models for anomaly detection in medical images. Medical Image Analysis

Behrendt, Finn, et al. (2023) "Patched diffusion models for unsupervised anomaly detection in brain mri." Medical Imaging with Deep Learning

Liang, Ziyun, et al. (2023) "Modality Cycles with Masked Conditional Diffusion for Unsupervised Anomaly Segmentation in MRI." arXiv preprint arXiv:2308.16150.

Figure by Song et al ICLR 2022. 
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• Latent Diffusion Model (LDM) learns the distribution 
of healthy brain data

• Compression (Vector-Quantised VAE) scales for 
high-resolution images

Unsupervised Anomaly Segmentation

123
Pinaya et al (2022). Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models. DOI:10.1007/978-3-031-16452-1_67

LDM identify regions with 

a low likelihood of being 

part of the healthy dataset

Reverse/denoising

process is used to inpaint

these regions and “heal” 

the possible anomalies



simplex noise scale controls target anomaly size

Anomaly Detection with Simplex Noise

124Wyatt et al (2022) AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. CVPR workshop

• Typical Gaussian noise is found to be 

insuffient for anomaly detection.

• Therefore, we explore the use of simplex 

noise for the corruption and sample 

generation of medical images.



Anomaly Detection with Coarse Noise

125Kascenas et al (2023) The role of noise in denoising models for anomaly detection in medical images. Medical Image Analysis



Anomaly Detection from Patches

126Behrendt, Finn, et al. (2023) "Patched diffusion models for unsupervised anomaly detection in brain mri." Medical Imaging with Deep Learning



Anomaly Detection from Modality Cycles

127Liang, Ziyun, et al. (2023) "Modality Cycles with Masked Conditional Diffusion for Unsupervised Anomaly Segmentation in MRI." arXiv preprint arXiv:2308.16150.



• Goal: Pixel-wise anomaly detection using image-level labels only

Weakly Supervised Lesion Detection

Healthy Unhealthy

128



Weakly Supervised Lesion Detection

Set of images of a 

healthy control

group

Set of patients

affected by a 

specific disease

Unpaired image-to-image translation

differenceimage of a patient

_
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healthy reconstruction



130Wolleb et al (2022). Diffusion Models for Medical Anomaly Detection, MICCAI 2022. arXiv:2203.04306

Weakly Supervised Lesion Detection

Gradient GuidanceDDIM 
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Gradient Guidance



Lesion Localization with Diffusion Models

1. DDIM Encoding - Empty condition

2. DDIM Decoding - Target class

Latent Space 
Original

Image

Healthy 

Counterfactual
Heatmap

132Sanchez et al (2022). What is Healthy? Generative Counterfactual Diffusion for Lesion Localization. DGM4MICCAI 2022. arXiv:2207.12268

Classifier-free guidance



Image Reconstruction
Image Registration

Image-to-Image Translation Image Synthesis

Inpainting

Image Segmentation

Anomaly Detection
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• Surveys

 https://arxiv.org/abs/2209.02646

 https://arxiv.org/abs/2209.00796

• Github

 https://github.com/heejkoo/Awesome-Diffusion-Models

• Tutorial
 https://cvpr2022-tutorial-diffusion-models.github.io

 https://huggingface.co/blog/annotated-diffusion

 https://huggingface.co/docs/diffusers

Useful key references, gits to watch etc
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