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Image Analysis: The New Bottleneck in Plant Phenotyping

P
lant phenotyping is the identi-
fication of effects on the phe-
notype P G E#=  (i.e., the 
plant appearance and perfor-
mance) as a result of genotype 

differences (i.e., differences in the 
genetic code) and the environmental 
conditions to which a plant has been 
exposed [1]–[3]. According to the Food 
and Agriculture Organization of the 
United Nations, large-scale experiments 
in plant phenotyping are a key factor in 
meeting the agricultural needs of the 
future to feed the world and provide bio-
mass for energy, while using less water, 
land, and fertilizer under a constantly 
evolving environment due to climate 
change. Working on model plants (such 
as Arabidopsis), combined with remark-
able advances in genotyping, has revolu-
tionized our understanding of biology 
but has accelerated the need for preci-
sion and automation in phenotyping, 
favoring approaches that provide quanti-
fiable phenotypic information that could 
be better used to link and find associa-
tions in the genotype [4]. While early 
on, the collection of phenotypes was 
manual, currently noninvasive, imag-
ing-based methods are increasingly 
being utilized [5], [6]. However, the rate 
at which phenotypes are extracted in the 
field or in the lab is not matching the 
speed of genotyping and is creating a 
bottleneck [1]. 

While the bottleneck was previously 
the equipment (the hardware), it is now 
the analysis (the software). There is a 
need to develop accurate, robust, and 
automated analysis algorithms that can 
extract phenotypic information from 

experiments on the small (cell) or large 
scale (field), in two or three dimensions, 
in the lab but more importantly in the 
field on real crops. These algorithms 
should be coupled with affordable plat-
forms and should deal with an immense 
amount of data produced in these experi-
ments. Experts (from biology as well as 
data analysis) now agree that the analysis 
of imaging data is currently the weakest, 
or even the missing, link due to the 
major challenges in computer vision and 
image processing we are currently facing. 

ComPuTer VIsIoN ANd ImAge 
ProCessINg ChAlleNges
Noninvasive plant investigations are done 
on different scales and modalities using a 
variety of sensors [2], [5]. This includes 
optical imaging, hyperspectral imaging to 
reveal rich pixel information on plant 
properties, and even magnetic resonance 
imaging (MRI) and positron emission 
tomography (PET). Spatial scales vary 
from the microscopic subcellular level to 
large outdoor fields. Typical problems in 
measuring a plant’s visible properties 
comprise measuring size, shape, and other 
structural traits of whole plants, their 
organs, or plant populations. 

Plants are not static, but self-changing 
systems with complexity in shape and 
appearance increasing over time. They 
emerge below image resolution and grow 
exponentially in time until, for a single 
leaf, growth levels off typically at several 
cm2 size—i.e., several orders of magnitude 
change. Relevant timescales for cellular 
processes may be seconds or minutes, for 
growing leaves in the range of hours, and 
the status of whole plants changes over days 
or even months, in which the surrounding 
environmental (as well as measurement) 
conditions may also change. 

Algorithms must deal with the afore-
mentioned complexity, and the follow-
ing sections describe unique challenges 
by illustrating typical applications. 
Clearly, the list of applications can never 
be complete, but we present some of the 
major themes. 

Cells and Organs:  
deteCtiOn, traCking,  
and struCtural Breaks
One of the earliest forms of phenotyping 
where imaging-based setups were used is in 
the context of microscopy [2]. Plant tissue 
samples are excised and imaged under a 
microscope to reveal the cellular structure 
[cf. Figure 1(a)]. From an image processing 
perspective, the automated delineation of 
cell walls to establish cell morphology and 
cell count is typically needed. 

However, more interesting problems 
arise from the use of recent techniques 
such as confocal microscopy, optical pro-
jection tomography, and optical coherence 
microscopy, which permit the noninvasive 
quantification of cellular morphometry at 
a variety of scales and depths. These tech-
niques enable the observation of plant tis-
sue dynamics on a short (and long) time-
scale, therefore tracking problems arise. 
These become particularly challenging 
when cell genesis needs to be observed 
and quantified, since cell division and 
expansion impose high spatiotemporal 
fidelity requirements. From a computer 
vision perspective, this problem, which 
also occurs in other biomedical appli-
cations, entails the inference of time and 
location of when and where such events 
occur within the scene, a task radically dif-
ferent from the typical tracking of objects 
entering or leaving the scene. 

Over the last decade, several controlled 
setups [see Figure 1(c)–(e)] have emerged 
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that image top-down views of small rosette 
plants, e.g., Arabidopsis or young tobacco, 
acquiring either one plant per image or sev-
eral plants at once [see Figure 1(f)–(g)], 
housed in so-called growth chambers, 
where environmental conditions are con-
trolled. Even in this very restricted  imaging 
scenario, fully automatic segmentation of 
single plants can be a challenge due to, e.g., 
background clutter from moss growing on 
the soil, plant-to-plant overlap, heavy con-
trast changes due to (self-)shadowing, leaf 
color changes due to stress (e.g., drought), 
different light conditions and pathogen 
infections, and plant shape or size variation 
due to genotypic differences (cultivars or 
mutants) and treatments. 

Segmenting single leaves is a typical 
multi-instance segmentation task [see 

Figure 1(g) and (h)]; however, even 
though all the objects share a wide range 
of features (e.g., they are mostly green 
with similar brightness distributions), 
they show rich variations. Leaves differ in 
size over several orders of magnitude, 
introducing a structural break due to res-
olution limitations, and algorithms need 
to deal with leaves emerging in the scene. 

In addition, leaves vary in shape, and 
while they do share a certain basic shape, 
they overlap, bend, and vary in pose. Even 
for the same species, leaves may differ sub-
stantially, as leaf shape, size, color, and 
overall appearance of a plant depend on 
the genotype (e.g., there are thousands of 
mutants available for Arabidopsis alone), 
environmental factors (drought, low or 
high light, and temperature), and the age 

of each leaf. Readily apparent approaches 
based on learning shape from a labeled 
data set reveal their limitations when 
having to deal with such shape diversity 
and different acquisition conditions. 
While counting and segmenting leaves 
from such images can be simple for a 
human, no automated algorithmic solu-
tion is yet available that comes close to 
human performance. 

WhOle Plants:   
anatOmiCally COrreCt 3-d 
geOmetriC mOdeling
For larger plants, reconstruction from a 
single image and viewpoint is not sufficient. 
Most approaches aim at obtaining an as 
complete three-dimensional (3-D) shape 
reconstruction as possible, geometrically 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

[FIg1] An example of plant phenotyping setups and images. (a) At the smallest scale, microscopy can image cells.  
(b)–(d) movable imaging setups [15] or a (e) single overview camera setup can be used to image (f) many plants or (g) single 
plants, where (h) leaf segmentation is a sought-after outcome yielding growth measurements. roots can be imaged in  
(i) rhizotrons [15], requiring (j) delineation. (k)–(l) optical flow tracking [15] can measure finer leaf level growth. Airborne 
vehicles, e.g., (m) drones, can provide information on fields, e.g., (n) hyperspectral images [15]. [(a) is adapted from [7] and 
reproduced by permission of elsevier. (b), (c), and (m) are courtesy of Alexander Putz, (i) and (j) are courtesy of Kerstin Nagel, 
and (n) is courtesy of uwe rascher.]
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modeling the overall above-ground part of 
a plant, i.e., the shoot. However, details of 
parts are also investigated, such as grains 
on an ear (e.g., of corn), berries on wine 
grapes, flower development, etc. Imaging 
becomes more and more automated using 
conveyor-belt or robotized systems [see 
Figure 1(b)–(d)], allowing high throughput 
with thousands of plants. Automation of 
image analysis is then a must. 

A variety of 3-D measuring strategies 
is currently being investigated, e.g., corre-
spondence-based triangulation methods, 
silhouette-based carving, time-of-flight 
cameras, or light detection and ranging 
laser scanning (see [8] for a comprehen-
sive overview). Setups are usually tailored 
to a particular species and conditions. This 
is, for example, due to size and image res-
olution constraints, or self-occlusion and 
self-similarity hampering triangulation. 

A major challenge for all 3-D measur-
ing methods is plant motion during 
acquisition. Time delays due to scanning 
or sequential image acquisition lead to 
notable geometric distortions, especially 
for outdoor measurements with wind. 
The data then cannot be described by a 
static model and all current approaches 
doing so fail one way or another. 

From the 3-D data, quantitative infor-
mation about plant traits need to be 
extracted. Simple summary traits, such as 
covered volume or plant height, could be 
estimated from images alone without 3-D 
reconstruction. But organ-wise traits, 
e.g., accurate leaf size or branching angle, 
require interpretation of 3-D data and 
plant part models. Simple models are 
used today (e.g., fitting two-dimensional 
surfaces to patches and merging them), 
but for most species new anatomically 
correct models are required. 

WhOle Plants BelOW grOund: 
Cluttered images Of rOOts
It is not possible to look through soil with 
the naked eye. Thus, classical root system 
analysis is invasive, meaning that plants 
are dug out and the roots washed and 
imaged. Usual image analysis then applies 
threshold-based segmentation, connected 
component labeling, and skeletonization, 
followed by estimation of traits such as 
overall graph length, branching angles, 

and others. All solutions available to date 
have only limited effectiveness when root 
systems are heavily entangled. Obviously, 
no time-series analysis can be performed 
when plants are dug out. 

In soil, roots can be imaged noninva-
sively using so-called rhizotrons [9], i.e., 
flat pots with large vertical windows, such 
that parts of the roots visibly grow along 
the window [see Figure 1(i) and (j)]. In 
dark soil and at high spatial resolution, 
segmentation of bright roots may be done 
with solutions developed, e.g., for angio-
grams in medicine; but under realistic 
conditions this is difficult: even with 
high-resolution cameras (in the 30 mega-
pixel range) fine roots may be only few 
pixels wide, blurred and with poor con-
trast to the surrounding soil. Many cur-
rent segmentation solutions are slow or 
even break down when applied to such 
large images. Thus, computational effi-
ciency is an issue. In addition, windows 
can get scratched by frequent use and soil 
contains all sorts of clutter. To date, reli-
able segmentation of such images can 
only be done semiautomatically, requir-
ing user assistance. Even learning-based 
methodologies yield unimpressive results, 
which point to the need for finding (or 
learning) better feature representations. 

Using penetrating radiation or modali-
ties such as MRI, PET, and X-ray com-
puted tomography, roots can be imaged 
in soil in 3-D, where different imaging 
techniques yield complementary contrast 
information and metabolic function (e.g., 
with PET). Challenges are similar to med-
ical applications including proper (co)reg-
istration of time series of deforming 
objects of potentially different modalities, 
disentangling objects, measuring geomet-
ric traits, etc. However, artifacts and 
structures are different. 

adding dynamiCs: traCking, 
flOW, and grOWth estimatiOn
For many plant traits, temporal dynamics 
are of high relevance. Growth analyses on 
the local tissue level are typically per-
formed on image sequences with frame 
rates in the range of one per minute. A 
long-established technique restricts the 
leaf of interest to a plane by pulling it flat 
and images it using a single camera. 

Growth is then calculated as divergence 
of an estimated optical flow field. Unfor-
tunately, with this simple engineering 
solution, gene expression analyses have 
shown that “tension-stress genes” are 
turned on during such experiments, and 
thus the observed growth may be influ-
enced on the molecular level. For non-
fixed leaves moving in 3-D, calculating 
scene flow from multicamera “light-
field” image sequences has been investi-
gated [see Figure 1(k) and (l)]. This 
allows precise translation and rotation 
field estimation. Local growth can also 
be estimated from divergence, however, 
signal-to-noise-ratio is relatively poor. 
To date, no reliable local growth mea-
suring technique without fixating leaves 
is available. 

When aiming for growth analysis (in 
terms of summary growth over an organ), 
segmentation or reconstruction tech-
niques as described earlier are needed. For 
simple plant architectures, e.g., young 
tobacco with up to eight leaves, leaf-wise 
tracking in temporally sufficiently high-
resolved data sets has been demonstrated 
[10]. No reliable method for leaf-wise 
tracking has been reported in the litera-
ture so far for when time intervals become 
larger, or plant complexity is higher.  

the greenhOuse, field, and 
farm: mOre VariaBility
While experiments in the laboratory do 
advance our knowledge of biological sys-
tems and their functioning, ultimately 
phenotyping must translate the knowl-
edge to the society and stakeholders, such 
as breeders and farmers [3]. Phenotyping 
investigations must then be conducted 
under “real” (or realistic) conditions in the 
greenhouse or field, on crops that carry 
agricultural importance, such as corn, 
wheat, rice, barley, etc. [11]. 

Starting with the greenhouse, auto-
mated systems that are able to water and 
image plants, either move the plant to the 
imaging station or move the  imaging appa-
ratuses to the plants. Independent of set-
ting, any positioning differences, either of 
the camera or the plant, radically compli-
cate the process of establishing temporal 
correspondences between consecutive mea-
surements. Taking the imaging apparatus 
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outside and in the field introduces addi-
tional challenges. Several approaches 
exist that mount  sensors on specialized 
carriers: human- controlled tractors or 
other ground vehicles, or in the air with 
unmanned aerial vehicles [Figure 1(m)] 
operated either remotely or in an auto-
mated fashion. Image data differ tremen-
dously in resolution, detail, motion blur, or 
clutter, severely affecting subsequent analy-
sis tasks, thus, more robust algorithms are 
necessary. Computational efficiency is an 
issue, as the amount of imaging data pro-
duced is enormous [cf. Figure 1(n)], and 
analysis tasks can be significantly complex. 
Efforts in directly using analysis results for 
cultivation practices are the central theme 
in precision agriculture [3], which aims at 
tailoring treatment at the individual plant 
level. Thus, computer vision becomes cru-
cial in supporting the whole process and 
evidently there is now the additional chal-
lenge of identifying low-complexity 
approaches to robust vision. 

affOrdaBility:  
COPing With restriCtiOns
Currently, most versatile solutions are 
too expensive, and many labs instead 
develop highly customized (hardware and 
image analysis) solutions tailored to their 
experimental setting that are capable of 
addressing only specific phenotyping 
problems. Even when they are affordable, 

this variability in methods and setups 
creates standardization problems. 

The use of off-the-shelf commercial 
equipment (such as commercial cameras 
[12] or the Kinect [5]) could facilitate stan-
dardization across experiments, lower the 
entry barrier, offer affordable solutions, and 
help many labs adopt the image-based 
approach to plant phenotyping. 

Our recent project [16] aims to pro-
vide a universal turnkey and modular 
platform based on a distributed sensing 
and analysis framework [13], as shown 
in Figure 2. This distributed approach 
presents several key advantages. Afford-
able and easy-to-install sensors can be 
deployed in laboratories (growth cham-
bers), the greenhouse, or the field to 
cover wide areas, before resorting to 
more costly and complex solutions 
based on robotics and automation. It is 
easy to become accustomed to a cloud-
based storage and analysis application 
that is always up to date. It  relieves 
users from maintaining a computing 
infrastructure and, importantly, it also 
permits consistency in experiments 
among different labs by standardizing 
equipment and analysis. 

This centralized design, particularly 
when combined with an open architec-
ture, can benefit the entire community, 
providing a modular and expandable 
architecture (by changing or adding new 

camera sensors), favoring software reuse 
(e.g., user-contributed algorithms can be 
adopted by other labs), and knowledge 
sharing (e.g., a common repository of 
acquired data and meta-data, and also 
the analysis application itself learning on 
the user’s feedback). 

Affordability and remote processing, 
however, pose technical challenges. The 
choice of optics and the fixed field of view 
restrict the quality (in resolution and 
sharpness) of the acquired images and the 
plants this setup can image (e.g., it may 
not be suitable for not coplanar plants). 
An affordable sensor will have limited 
computational power and knowledge 
access, thus, it requires low-complexity 
algorithms to perform some of the tasks 
outlined in previous sections, and as such 
remote processing is necessary. Then the 
transmission of (possibly) large volumes 
of image data necessitates compression to 
meet bandwidth constraints. While this 
loss of information will affect the accu-
racy of the analysis algorithm, recent 
advances in application-aware compres-
sion can tune compression parameters to 
meet analysis accuracy needs [13], [14]. 
From a software engineering perspective, 
backward compatibility of the analysis 
framework and of the computational 
backbone has to be ensured, such that 
experimental protocols and results 
obtained previously remain valid. 

[FIg2] (a) Affordable camera sensors (e.g., based on the raspberry Pi [17]) acquire time-lapse sequences of the scene, including 
one or multiple plants. (b) Images are compressed and transmitted to the cloud, where high computational power and a broad 
knowledge base enable sophisticated computer vision tasks (e.g., leaf segmentation and tracking, optical flow analysis). 
Additionally, information is fed back to the sensor. relying on Web-based graphical user interfaces, (c) phenotyping results are 
presented to the user for interpretation.
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A TImely ANd uNIque 
ChAlleNge
A quantitative description of plant phe-
notypes is a key ingredient for a knowl-
edge-based bioeconomy, and this not 
only literally helps in the efforts to feed 
the world but is also essential for fiber 
and fuel production, the so-called Green 
Revolution 2.0. In fact, comparing the 
“Top 10 list of Emerging Technologies” 
in 2012 according to the world eco-
nomic forum, the top 1, 2, 3, and 5 
technologies are directly addressed by 
plant phenotyping research [18]. 
Recently, we have even witnessed direct 
investments in helping the translation 
of agricultural technology in farming. 
For example, Farm2050 [19] includes 
the information extraction powerhouse 
Google and drone company 3-D Robot-
ics among its partners.

There is not only growing interest 
from the application side, both scientifi-
cally and commercially, but exciting com-
puter vision and image processing 
problems exist that differ from other bio-
medical applications. While medicine 
focuses on the status of a single species 
(i.e., humans) in a diagnostic capacity, 
plant phenotyping addresses a large num-
ber of different plant species with hun-
dreds to thousands of genotypes 
(cultivars) per species, usually in group-
wise experiments. It addresses the devel-
opment over time in addition to static 
snapshots and under a wide range of envi-
ronmental conditions, using various 
imaging setups (as opposed to medical 
imaging where predefined protocols are 
in place and equipment variability is rela-
tively limited). Thus, even within a single 
application, diverse conditions need to be 

addressed, to ascertain a robust image-
based measurement of the phenotypic 
trait. Plant phenotyping at a high 
throughput requires reliable image pro-
cessing algorithms that could batch pro-
cess many data accurately, and an 
integration with genetic databases and 
other frameworks. 

The previous sections outlined a 
series of challenges (e.g., dealing with 
structural breaks in tracking/detection), 
for which our community can get 
involved. In this article, although we 
focus on extracting information from 
images, data mining and combing the 
information from genotyping, environ-
mental, and phenotyping sources are by 
themselves a big undertaking as well. 
Jointly, we must make the effort to solve 
these problems and push the envelope 
further, and by including the resources 
in Table 1, we hope to help facilitate this. 
We need to cooperate with different dis-
ciplines to integrate expertise across the 
spectrum and provide biologically or 
agronomically meaningful and techni-
cally robust solutions [3], [7] to help 
resolve this bottleneck. 
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[TABle 1] geT INVolVed: A ColleCTIoN oF oNlINe resourCes.

NAme desCrIPTIoN 
sPeCIAlIzed sCIeNTIFIC eVeNTs

CVPPP2014 [20] and  
CVPPP2015 [21]

THE FIRST and SECOnd WORKSHOP FOR COMPUTER VISIOn 
PROBLEMS In PLanT PHEnOTYPInG, aLSO HOSTInG CHaLLEnG-
ES SUCH aS THE LEaF SEGMEnTaTIOn CHaLLEnGE (LSC) 

IaMPS [22] InTERnaTIOnaL WORKSHOP On IMaGE anaLYSIS METHOdS FOR 
THE PLanT SCIEnCES 

PHEnOdaYS [23] InTERnaTIOnaL SYMPOSIUM InVOLVInG SEEd IndUSTRY, 
 BREEdInG InSTITUTES, and aCadEMIC BREEdInG GROUPS 

IPPS [24] InTERnaTIOnaL PLanT PHEnOTYPInG SYMPOSIUM 

ICPa [25] InTERnaTIOnaL COnFEREnCE On PRECISIOn aGRICULTURE 

ImAge dATABAses

LSC CHaLLEnGE [26] IMaGES and LEaF-BaSEd SEGMEnTaTIOn MaSKS aS PaRT OF 
THE FIRST LSC CHaLLEnGE 

MaIzEGdB [27] IMaGES OF MaIzE 

CWFId [28] THE CROP/WEEd FIELd IMaGE daTa SET (CWFId) COnTaInS 
 IMaGES WITH CROP/WEEd dELInEaTIOnS FOR a CLaSSIFICaTIOn 
TaSK In PRECISIOn aGRICULTURE

PHEnOPSIS dB [29] aRaBIdOPSIS THaLIana PHEnOTYPInG daTaBaSE 

CoNsorTIA ANd orgANIzATIoNs

IPLanT COLLaBORaTIVE [30] COnnECT SCIEnTISTS TO PUBLIC daTa SETS, ManaGE and 
STORE THEIR daTa and ExPERIMEnTS, aCCESS HIGH- 
PERFORManCE COMPUTInG, ETC. 

IPPn [31] InTERnaTIOnaL PLanT PHEnOTYPInG nETWORK 
EPPn [32] EUROPEan PLanT PHEnOTYPInG nETWORK 
EPSO [33] EUROPEan PLanT SCIEnCE ORGanISaTIOn 
FESPB [34] FEdERaTIOn OF EUROPEan SOCIETIES OF PLanT BIOLOGY 
IEEE RaS [35] aGRICULTURaL ROBOTICS and aUTOMaTIOn 
ISPa [36] InTERnaTIOnaL SOCIETY OF PRECISIOn aGRICULTURE 
E-aGRICULTURE [37] ICT FOR SUSTaInaBLE aGRICULTURE 
BSa [38] BOTanICaL SOCIETY OF aMERICa, LISTInG FURTHER PLanT 

 SOCIETIES and ORGanIzaTIOnS [39]

soFTWAre dATABAses

PLanT IMaGE anaLYSIS [40] THIS daTaBaSE CURREnTLY PROVIdES a COLLECTIOn OF 
aPPROxIMaTELY 120 anaLYSIS TOOLS 
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SigView.org   Multimedia Tutorials 
 

v Check out tutorials by leading signal processing experts 
 

v Enable IEEE SPS members to create, host, and share 
multimedia tutorials from existing slides deck and media	  

Fundamentals	  of	  Compressive	  
Sensing	  	  by	  Mark	  Daveport 

	  

DSP	  on	  Graphs	  
by	  José	  Moura 

	  

Big	  Data	  and	  Machine	  
Learning	  in	  Cancer	  Genomics	  
by	  Ali	  Bashashati	   

v Missed ICASSP?  Check out ICASSP Plenary talks since 2010 on SigView	  
 

v Stay tuned for recent talks from the School of ICASSP 2015, IEEE SPS Distinguished 
Lectures, and more 	  
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