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Abstract An important step in color image or video coding and enhancement is the
linear transformation of input (typically RGB) data into a color space more suitable
for compression, subsequent analysis, or visualization. The choice of this transform
becomes even more critical when operating in distributed and low-computational
power environments, such as visual sensor networks or remote sensing. Data-driven
transforms are rarely used due to increased complexity. Most schemes adopt fixed
transforms to decorrelate the color channels which are then processed indepen-
dently. Here we propose two frameworks to find appropriate data-driven trans-
forms in different settings. The first, named approximate Karhunen-Loève Trans-
form (aKLT), performs comparable to the KLT at a fraction of the computational
complexity, thus favoring adoption on sensors and resource-constrained devices.
Furthermore, we consider an application-aware setting in which an expert system
(e.g., a classifier) analyzes imaging data at the receiver’s end. In a compression con-
text, distortion may jeopardize the accuracy of the analysis. Since the KLT is not
optimal in this setting, we investigate formulations that maximize post-compression
expert system performance. Relaxing decorrelation and energy compactness con-
straints, a second transform can be obtained offline with supervised learning meth-
ods. Finally, we propose transforms that accommodate both constraints, and are
found using regularized optimization.
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1 Introduction

The red-green-blue (RGB) color model is currently the standard for acquisition and
display of color digital images. However, this representation is not efficient for cod-
ing, due to high correlation between color bands of natural images [51].

To reduce spectral redundancy, image and video compression algorithms oper-
ate on luminance/chrominance representations of the color information, achieved
through linear transformations of the RGB color space [47, 50]. Each color band
is coded independently, therein deploying a variety of techniques to address spa-
tial and, for video, also temporal correlation. A family of such color models is the
YCbCr, defined by the International Telecommunication Union [30] and adopted
by many coding standards [55]. However, due to high variability in source image
characteristics, a fixed transform may easily result in suboptimal performance, thus
motivating the adoption in some contexts of a data-dependent one.

Among the linear transformations, the energy compaction and decorrelation
properties of the Karhunen-Loève transform (KLT) [32] make it desirable for color
image compression [19, 37, 51, 52, 64]. The KLT has been adopted in many coding
schemes (e.g., for dimensionality reduction [1, 9]), and it was shown to be superior
to other approaches in a variety of contexts, both for color [8,23,35] and hyperspec-
tral [13] imagery, and has formed the basis for new fixed transforms [24, 36, 42].
However, the computational complexity of calculating the color covariance ma-
trix limits its applicability in real-time video enhancement applications (e.g., de-
noising [67], contrast and color [20, 21] enhancement, color to gray scale conver-
sion [11]), and sensing environments with low computational power (e.g., surveil-
lance cameras or visual sensor networks operating under low lighting conditions).

A variety of approaches have been proposed to circumvent this bottleneck.
Kountchev et al. rely on covariance matrix approximations [38], while [11] uses
numerical methods to estimate eigenvalues and eigenvectors of the covariance ma-
trix. Subsampling strategies to limit complexity by reducing the amount of input
data are discussed in [14, 48]. Du et al. adopt a learning approach based on neu-
ral networks to estimate projection directions [14]. Porikli et al. [49] propose an
algorithm based on integral images for fast computation of the covariance matrix.
Others focus on schemes that favor parallel implementations [4, 66] of the KLT, or
implementations optimized for graphics processing units [4,34,41]. In this work, we
propose a new data-dependent color transform, the aKLT, rooted in the orthogonal
Procrustes problem, that preserves energy compaction and performs similar to the
KLT, but is less computationally complex.

Although KLT and aKLT are designed to match the statistical properties of the
image data, they are agnostic to the semantics of the scene (e.g., distinction be-
tween foreground and background regions). In present days, more often than not,
image data are analyzed by computer vision algorithms (e.g., surveillance applica-
tions [33], industrial inspection [2], or medical image analysis [7]) and their trans-
mission over channels necessitates their compression, to reduce bandwidth costs. It
was shown recently that considering the application and designing data codecs ap-
propriately not to maximize fidelity type criteria (e.g., mean squared error [61]) or
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Fig. 1 Schematic of the typical encoding/decoding process of a color image.

psycho-visual criteria (e.g., structural similarity [62]), but considering how would
an analysis algorithm (e.g., a classifier) perform on compressed data, is beneficial
from a bit rate perspective [57]. This notion was explored in [12] and [57] with re-
spect to quantization, however, as of now the design of color transforms optimized
particularly for application accuracy has not been considered yet. In this work we
consider such application to be classification, motivated by its broad range of real-
world applications. Thus, we propose for the first time to obtain a color transform
using supervision (e.g., previously labeled image data), aiming at the preservation
of the image features relevant to the application. We formulate our methodology as a
supervised learning problem, envisioning two alternative approaches to find a solu-
tion, relying either on the Foley-Sammon transform (FST) [17] or on metric learning
methods [39]. From an application-aware image compression perspective, it is de-
sirable to achieve: (a) classification accuracy, pursued by enhancing separability of
the transformed data, and (b) compression performance, achieved with decorrelation
and energy compaction. These two requirements appear conflicting and designing
a color transform that optimally accommodates both remains an open challenge.
Therefore, we propose to adopt an optimization approach to obtain application-
dependent color transforms that while aiming to retain energy compaction prop-
erties, also try to maximize separability of the transformed data.

This chapter builds upon our previous work [45], where we first investigate our
proposed color transforms and present preliminary results. The rest of the chapter
is organized as follows. Section 2 details our methodology to learn color transforms
from the data. Section 3 demonstrates the proposed approaches on a variety of differ-
ent image datasets, using the JPEG 2000 standard to compress test images. Finally,
Section 4 offers concluding remarks.

2 Methodology

We represent an RGB image as a 3×n matrix X =
(
r,g,b

)T, where r, g, and b are
the linearized color components, and n is the number of pixels. Prior to lossy coding,
X is projected into a new color space by T∈R3×3. Each pixel value xi =

(
ri,gi,bi

)T
in X is transformed by the linear relation yi = Txi. Upon reconstruction, the color
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transform is inverted, obtaining the approximation x̃i = T−1ỹi in the RGB domain.
To ensure that the output range of yi is the same as xi (e.g., 0 to 255, for 8-bit
unsigned integer representation), we scale the directions (rows) of T with respect to
the `1 norm [36].

We operate in the general framework depicted in Figure 1, in which color trans-
formation is decoupled from encoding/decoding operations. Therefore, any com-
pression scheme can be adopted (in the experiments we use the JPEG 2000 stan-
dard [56]) and the resulting bit stream will be standard-compliant.

In the following, we address the problem of obtaining data-driven color space
transformations1, that change according to the image to be encoded or the applica-
tion the images will be used for. In Section 2.1, based on a heuristic, we derive a new
low-complexity transform (aKLT) that adapts to the content using statistical infor-
mation from the image being processed. In Section 2.2, we propose a novel approach
to obtain transforms that adapt according to the application (here a pixel-level classi-
fier for foreground-background segmentation), relying on supervised learning meth-
ods and labeled training data. Finally, in Section 2.3, we combine the unsupervised
and the supervised transforms using an optimization approach.

2.1 The aKLT: A low-complexity unsupervised data-dependent
transform

The KLT produces an orthogonal transformation, K, obtained from the eigende-
composition of the color covariance matrix Σ = 1

n ∑
n
i=1(xi − µ)(xi − µ)T, where

µ = 1
n ∑

n
i=1 xi is the mean color vector [51]. The eigenvectors of Σ, sorted in de-

creasing order of magnitude of the corresponding eigenvalues, define the directions
of K. The KLT achieves complete statistical decorrelation of the color signals and
energy compaction in the first channel, thus favoring efficient representation and
subsampling of the other two channels [40, 52].

However, estimation of Σ can be computationally demanding in memory and
computing power, particularly when images are large, and its application in resource-
constrained sensing devices can be problematic. Thus, we seek to find a transform
that is close to the KLT but less computationally complex to obtain.

Let X ∈ R3×n be the matrix obtained by normalizing each column (pixel) of X
with respect to the `2 norm. We seek an orthogonal transform Ω ∈ R3×3 that maps
X to a given reference matrix W ∈ R3×n, and formulate it as:

minimize
Ω

‖W−ΩX‖F

subject to Ω
T

Ω = I ,
(1)

1 Approaches to efficiently compute the color space conversion for a known transform are dis-
cussed, e.g., in [6, 65].
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where ‖·‖F denotes the Frobenius norm, and I is the identity matrix. Let Z = WXT,
and Z = USVT be the singular value decomposition (SVD) of Z. The optimization
problem of Eq. (1), known as the orthogonal Procrustes problem, admits closed-
form solution UVT [54]. In order to concentrate energy in the first direction, we
impose structure to W:

W =

1 . . . 1
0 . . . 0
0 . . . 0

.
Notably, this leads to a simplified form of Z:

Z =

∑
n
i=1 ri ∑

n
i=1 gi ∑

n
i=1 bi

0 0 0
0 0 0

,
with only a single direction, a1 = zT1 /‖z1‖2, that corresponds to the principal direc-
tion, thus making the SVD computation unnecessary. We adopt the vector a1 as an
approximation of the principal direction of the KLT.

In order to obtain the full transform, we proceed by constructing the 3×3 matrix
A =

(
a1,a2,a3

)
, where a2 and a3 are initialized with random elements, e.g., uni-

formly distributed on the interval [0,1] (the effect of randomness on performance is
explored in Section 3). Subsequently, we use QR factorization to decompose A into
the product A = QR, where Q ∈ R3×3 has orthogonal columns and R ∈ R3×3 is up-
per triangular. The aKLT transformation matrix, K̃ = QT, shares relevant properties
with the regular KLT: (a) orthogonality, and (b) energy compaction capabilities. Al-
though there is no guarantee on sorting and relative amount of energy of second and
third channel, this is not of concern from a compression standpoint (e.g., chroma
subsampling strategies would downsample the lower-energy components using the
same scheme).

Complexity comparison between KLT approaches. The computation of the KLT
requires 15n floating point operations in total, where n is the number of pixels, and
is dominated by computation of mean color vector µ (3n operations) and covari-
ance matrix Σ (due to symmetry, 12n operations are necessary to compute its 6
distinct entries). Notice that while most authors center the original data on the mean
prior to calculating Σ (a step that would require additional 3n operations, since it
is performed on all image pixels), the covariance matrix can also be defined as
Σ= 1

n

(
∑

n
i=1 xixTi

)
−µµT [3]. Thus, mean subtraction can be performed on the small

Table 1 Comparison of KLT approaches as a function of input size n, where n denotes the number
of image pixels.

KLT, Power method [11], ACKLT [38] Penna et al. [48] IPCAa [14] Porikli et al. [49] aKLT

15n ρ15n 15n 15n 12n

a Complexity reported by the authors of [14] only takes into account multiplications.
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3×3 autocorrelation matrix, with fixed computational cost [16]. We also ignore cost
of subsequent eigenvalue decomposition of Σ to obtain K, since this step does not
depend on n.

Approaches that speed up the eigendecomposition of Σ (e.g., power method [11],
or ACKLT [38]) provide negligible benefit in this context (particularly as image res-
olution increases). As shown in Table 1, the IPCA [14], based on neural networks,
achieves an approximation of the principal direction using 15n multiplications (ad-
ditions are not reported by the authors), while [48] necessitates to keep a fraction
ρ = 0.8 of the data to match the aKLT. Porikli et al. [49] propose a method based
on integral images for fast construction of feature covariance matrices of all pos-
sible rectangular regions in an image. However, when used in the full image, this
approach does not provide any benefit, computing the color covariance matrix using
also 15n operations.

On the other hand, our proposed aKLT estimates the statistical properties of the
source image and computes the color transform with lower computational complex-
ity. It requires 9n operations to normalize the input data, i.e. 3n to square the pixel
values, 2n to add the components of each pixel, n to compute the square root for each
pixel, and 3n to divide each channel by the so-obtained `2 norm (notice that mean
subtraction is not necessary for the aKLT). Furthermore, 3n operations are required
to calculate z1, and a small fixed cost (27 operations) for the QR decomposition of
A, resulting in 12n operations in total to obtain K̃, i.e. 20% reduction in complexity
compared to the regular KLT. Computational complexity of the aKLT can be further
reduced if combined with the sub-sampling strategies proposed in [48].

2.2 A supervised approach to an application-dependent color
transform using labeled pixels

It is known that projecting to principal components is not always optimal from a pat-
tern recognition perspective: clusters of points belonging to semantically different
objects in the scene may overlap now in the projected color space [59] (cf. Fig-
ure 2). Introducing distortions due to lossy compression may affect this separability
further. With an application-aware compression setting in mind, we seek to iden-
tify a transform that maintains (a) class separation as well as (b) decorrelation and
energy compaction properties.

We assume that the computation of the supervised color transform will occur in
an offline fashion and we will use a training set (pixels partitioned in two classes),
thus it is supervised. Compression of newly acquired images at the sensor occurs as
before, with the transform now known. The calculation of a new transform is neces-
sary only if the scene conditions change (depending on the process being observed)
and if new training data are available.

Let C1 and C2 be disjoint sets of pixel values (i.e. C1∩C2 = /0) representative of
distinct pattern classes (e.g., foreground and background). We seek an orthogonal
transform D ∈ R3×3 that projects data points belonging to distinct classes, x1 ∈C1
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Fig. 2 The KLT seeks direc-
tions of maximum variance
in the projected data. On the
other hand, the FST as other
discriminative methods seeks
directions that maximize
class separability in a lower-
dimensional subspace [59].

x1

x2

FST KL
T

and x2 ∈C2, in a domain where they are maximally separated according to a measure
of separability C :

maximize
D

C {Dx1,Dx2} (2a)

subject to DTD = I , (2b)

‖DΣDT−Λ‖F ≤ ε , (2c)

where I is the identity matrix, Σ is the color covariance matrix, Λ is a diagonal
matrix whose elements are the eigenvalues of Σ, and ε ≥ 0. The objective function
of Eq. (2a) accounts for the class separation property of D, while the constraints of
Eq. (2b) and (2c) allow for decorrelation and energy compaction. The parameter ε

determines the trade-off between class separation on the one hand and decorrelation
and energy compaction on the other hand. Therefore, solving the complete problem
of Eq. (2) would lead to an orthogonal transform with the full set of the desired
properties. On the other hand, imposing the orthogonality constraint (non-convex in
nature) renders the optimization problem of Eq. (2) non-convex, possibly admitting
multiple local optima. Non-convex problems are generally difficult to solve (i.e.
finding the global optimum), and require to resort to global optimization methods,
which are however computationally intensive. In the remainder of this section, we
relax the problem by ignoring Eq. (2c), but we revisit the complete problem in the
next section.

In the following paragraphs, we discuss two supervised learning approaches to
obtaining a color transform with class separation capabilities: (a) the Foley-Sammon
transform, based on the linear discriminant analysis, and (b) metric learning ap-
proaches.
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Foley-Sammon transform. An effective measure of class separability is the Fish-
er’s criterion [15, 59], defined as the difference between the means of the class data
points, normalized by a measure of the within-class dispersion. This notion is for-
mally expressed in the form of the generalized Rayleigh quotient:

J(d) =
dTSbd
dTSwd

, (3)

where d ∈R3, and Sb,Sw ∈R3×3 are, respectively, between-class scatter matrix and
within-class scatter matrix:

Sb =
2

∑
i=1

(mi−µ)(mi−µ)T ,

Sw =
2

∑
i=1

∑
x∈Ci

(x−mi)(x−mi)
T ,

where µ = ∑
2
i=1 Pimi is the mean sample vector, and mi ∈ R3 and Pi ∈ R are, re-

spectively, mean and a priori probability of class i.
A closed-form solution to finding orthogonal discriminant vectors that maximize

the Fisher’s criterion, can be obtained adopting the Foley-Sammon transform (FST)
[17]. The first direction, d1, termed Fisher’s discriminant vector (or Fisher’s lin-
ear discriminant [15]), corresponds to the projection direction that yields maximum
between-class scatter and minimum within-class scatter, i.e. d1 = arg max d J(d),
and is obtained as the eigenvector associated with the largest eigenvalue α1 satisfy-
ing Sbd1 =α1Swd1 [59]. The following directions to complete the three-dimensional
transform are found recursively, by maximizing the Fisher’s criterion with an or-
thogonality constraint. If D =

(
d1, . . . ,dr

)T is the set of previously obtained direc-
tions, dr+1 corresponds to the eigenvector associated with the largest eigenvalue
αr+1 satisfying MSbdr+1 = αr+1Swdr+1, where M = I− DT(DS−1

w DT)−1DS−1
w

[31], and I is the identity matrix. For three-dimensional RGB data, the final color
transformation matrix is defined by D =

(
d1,d2,d3

)T.
In this chapter we consider only a two-class classification problem (i.e. fore-

ground vs. background), however, the FST formulation can be easily generalized to
an arbitrary number of pattern classes [18]. According to the class distribution of
our test image datasets (cf. Section 3), we use the standard FST formulation to find
a linear separation between foreground and background. Kernel formulations of the
FST [68] could be adopted to accommodate non-linearly separable classes.

Metric learning approaches. Metric learning methods (see [39] for a comprehen-
sive survey) seek to estimate from supervised information a Mahalanobis distance
function over data points, DA(xi,x j) = (xi−x j)

TA(xi−x j), parametrized by a pos-
itive semidefinite matrix A = LTL. Computing the distance in the input space is
equivalent to applying a linear transformation L of the input space, such that data
points with small distance according to DA are close (in a Euclidean sense) in the
projected space, i.e. the matrix L minimizes DA(xi,x j) = ‖Lxi−Lx j‖2

2, which is
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another view of the objective function in Eq. (2a). While the FST matrix D is or-
thogonal, the L transformation matrix obtained by a metric learning approach is
positive semidefinite, and in general not orthogonal. Observe that orthogonality is
beneficial for the numerical stability of the color transformation, i.e. errors intro-
duced by compression and decompression operations are not magnified when for-
ward and reverse color space conversions are computed. Therefore, with respect to
the framework defined by Eq. (2), metric learning approaches optimize solely for
class separability.

Recent metric learning methods include Relevant Component Analysis (RCA)
[5], Large Margin Nearest Neighbors (LMNN) [63], and Information Theoretic
Metric Learning (ITML) [10], which can all be used to find L.

2.3 Combining unsupervised and supervised approaches

Our approach for finding the supervised transform D in Section 2.2 relaxed the con-
straint of optimal decorrelation and energy compaction of Eq. (2), finding one that
only optimizes for separation. In the previous section we also obtained orthogonality
when using the FST, however, this does not guarantee energy compaction, which is
achieved by the KLT (or can be approximated by the aKLT). Therefore, we consider
now a different approach, removing the orthogonality constraint to obtain a convex
relaxation of the problem of Eq. (2).

We seek to find a new transform D′ ∈R3×3 that is close to D whilst trying to sat-
isfy Eq. (2c), or equivalently, since we know that the KLT (or the aKLT) optimizes
Eq. (2c), we can pose the following unconstrained optimization problem:

minimize
D′

‖D′−D‖F +λ‖D′− K̃‖F , (4)

thus, finding a transform that is between D (application-aware, obtained offline us-
ing labeled data) and the aKLT (obtained at the sensor and computed based on the
unseen image), where the trade-off is controlled by the value of the regularization
parameter λ (playing here a role similar to ε in Eq. (2)). In the same fashion, the L
transform obtained with metric learning methods could be used in Eq. (4) instead of
D. Although D and K̃ in Eq. (4) are orthogonal, in general D′ will not be orthogonal.
Approaches for finding the nearest orthonormal matrix to D′ can be adopted, e.g.,
relying on the polar decomposition [27], or the square root matrix [28] of D′.

While this approach adapts the supervised transform to unseen data on the sensor
and is expected to gain decorrelating and compacting capabilities, from a computa-
tional perspective may be less attractive. In this setting, with the FST (or the RCA)
known, the encoder is required to compute the (a)KLT and then solve Eq. (4) to
obtain the final color transform.

The approaches presented in Sections 2.1 and 2.2 admit closed-form solutions,
whereas D′ is found relying on iterative optimization procedures computing the so-
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Fig. 3 (Left) Example images
of Arabidopsis plants from
different experiments [53],
and (right) corresponding
ground truth segmentations
delineated manually.

(c) (d)

(a) (b)

lution path along the λ parameter. On the other hand, Eq. (4) involves only color
transforms (i.e. small 3×3 matrices), rather than the original image pixels.

3 Results and Discussion

3.1 Experimental settings

The proposed methodology is evaluated on color image data from a variety of
classes. We demonstrate the unsupervised approach on standard test images, includ-
ing natural, aerial, and retinal [58] images (Figure 4). We showcase the supervised
transform using images of different size (up to 18 megapixel) downloaded from the
Internet2, including horses, balloons, and fish (Figure 6). The approaches are also
evaluated on a dataset of 20 images (width × height: 3108×2324 pixels) from a
time-lapse sequence of Arabidopsis plant subjects (Figure 3a), arising from plant
phenotyping experiments [53]. We use images from this application since they are
usually large and due to design requirements they may need to be communicated via
the Internet to centralized locations for processing [46]. Thus, any bit rate savings
possible are desirable.

We include in the comparison plain RGB (i.e. no color transform) and YCbCr
(ITU-R BT.601) [30]. KLT and aKLT are computed for each image. We also adopt
the Relevant Component Analysis (RCA) [5], a metric learning approach to find a
supervised transform L that aims to preserve variability in the data relevant to the
classification task at hand. For brevity and clarity of presentation we do not include
other popular metric learning approaches, such as LMNN [63] and ITML [10], be-
cause they perform similar to the RCA in our image compression context, while

2 http://www.flickr.com/
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being more computationally demanding (they rely on iterative optimization proce-
dures). The supervised transforms (FST, RCA) are estimated on manually labeled
training image data (excluded from testing). On the plant dataset, the supervised
transforms (D and L) are estimated from the first image of the time-lapse sequence
using pixel label information obtained manually. The so-obtained D and L are then
applied to all subsequent images of the same sequence and also to a test image
of Arabidopsis plants with different scene conditions (Figure 3c). While the other
transforms included in the comparison are either fixed (RGB, YCbCr) or present
closed-form solutions (KLT, aKLT, FST, RCA), to solve the optimization problem
of Eq. (4) we use CVX3, a package for specifying and solving convex programs [22].

After color space transformation, the images are compressed at various bit rates
(between 0.0625 and 2 bpp) using the JJ2000 software implementation4, version
5.1, of the JPEG 2000 coding standard [56]. We implement the proposed methods
using Matlab R2011b, and conduct all experiments on a machine with Intel Core 2
Duo CPU E8200 2.66 GHz and 4 GB memory.

The approaches are evaluated according to: (a) reconstruction accuracy, and (b)
application error. Reconstruction accuracy is measured using Peak Signal-to-Noise
Ratio (PSNR) in RGB image domain, either in the full image or in regions of interest
(e.g., foreground regions as in Figure 3). To estimate application error, we adopt the
task of plant segmentation for plant phenotyping applications [44,46], therefore, we
first build a rudimentary classifier. Similar to the approach described in [44], we
train a Gaussian mixture model, M , on color features (a* and b* components of the
CIE L*a*b* color space [29]), using labeled foreground (plant) data from the first
uncompressed image of the time-lapse sequence (excluded from testing). At each
tested bit rate, we calculate the average application error:

EM =
∑

n
i=1(M (x̃i)−M (xi))

2

∑
n
i=1(M (xi))2 , (5)

between the posterior probabilities estimated by M on the n original, xi, and recon-
structed, x̃i, image pixels. Application error is expressed in percentage, where best
possible value of EM is 0%.

3.2 Results

In this section, we present rate-distortion performance of the proposed approaches.
We first compare them in terms of overall reconstruction accuracy. Next, we demon-
strate the supervised approach in an application-aware context.

Reconstruction accuracy. On the benchmark images of Figure 4, all of the decor-
relating transforms provide considerable PSNR improvement with respect to the

3 http://cvxr.com/cvx
4 http://code.google.com/p/jj2000/
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Fig. 4 Reconstruction accuracy of standard test images, using fixed and data-dependent color
transforms (proposed transform is shown with solid red curve). (a) Jelly beans (width × height:
256×256 pixels). (b) Landscape of Bretagne (width × height: 2592×1944 pixels). (c) Aerial pho-
tograph of Woodland Hills, Ca. (width × height: 512×512 pixels). (d) Human retina [58] (width
× height: 565×584 pixels). For the aKLT, average results are shown, obtained using 100 different
initializations (see Section 2.1).

plain RGB color space, with the data-dependent transforms (KLT, aKLT) outper-
forming the fixed YCbCr. Notably, our proposed low-complexity aKLT, K̃, exhibits
performance very close to the regular KLT, or in some cases slightly superior (cf.
red line in Figure 4b and 4d, higher bit rates).

Table 2 reports image fidelity results for the Arabidopsis plant dataset5. At low bit
rates (< 1 bpp), decorrelating transforms (YCbCr, KLT, aKLT) achieve better perfor-
mance than RGB (0.25 to 0.6 dB improvement in PSNR). Performance of the aKLT
is always superior to the YCbCr, and for bit rates greater than 0.5 bpp it surpasses

5 Observe that, in general, major bit rate savings are attained by compression schemes with the
combined use of several coding tools. Thus, seemingly small differences in PSNR observed here
(i.e. in the order of a fraction of dB) are accounted for by the fact that only the effect of color
transformation is tested.
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Table 2 Reconstruction accuracy comparison for the plant dataset [53] (cf. Figure 3a).

Average PSNR (dB)

Bit Rate (bpp) RGB YCbCr KLT aKLT FST RCA

0.0625 26.75 27.07 27.28 27.23 26.81 25.68
0.125 27.86 28.31 28.44 28.39 27.92 26.26
0.25 29.09 29.53 29.58 29.55 29.13 27.21
0.5 30.53 30.78 30.81 30.90 30.49 28.05
1.0 32.39 32.39 32.28 32.46 32.07 29.23
2.0 34.86 34.68 34.48 34.81 34.46 30.42

Table 3 Mean and standard deviation of reconstruction accuracy performance for the images of
Figure 4, using the aKLT and 100 different initializations.

Average PSNR (dB)

Bit Rate (bpp) Jelly Beans Bretagne Aerial Retina

0.0625 22.52±0.08 35.32±0.06 21.09±0.03 33.82±0.08
0.125 25.71±0.06 36.85±0.05 22.16±0.07 36.10±0.07
0.25 29.22±0.11 38.33±0.04 23.48±0.09 38.39±0.06
0.5 33.05±0.06 39.98±0.04 25.20±0.10 40.40±0.05
1.0 37.41±0.04 42.25±0.02 27.27±0.12 42.43±0.05
2.0 42.71±0.06 45.20±0.02 30.12±0.17 44.92±0.06

the KLT. As also found by others in some cases [43], at higher bit rates the RGB
representation may result in higher performance, due to noise amplification effects
of the other transformations and reduced quantization (see solid green line in Fig-
ure 4a, in the range of bit rates close to 2 bpp). The supervised FST, D, shows PSNR
performance comparable to RGB, with slight improvement only at low bit rates. On
the other hand, the supervised RCA, L, performs worse than baseline RGB, proba-
bly due to the lack of orthogonality (Gershikov et al. [19] observe a dependence of
PSNR performance on the condition number of the color transformation matrix).

Figure 5 offers a visual comparison between the components of the color spaces.
The RGB channels appear highly redundant (particularly the first two, i.e. red and
green), total signal energy is spread across all channels, and the distributions of
intensity values span the entire 0 to 255 range. In the YCbCr, the distributions of
second and third channel cover a smaller range of values, however signal energy is
again dispersed over all three channels. On the other hand, KLT and aKLT present
highly similar output, with most of the signal energy (66-70%) compacted in the
first channel, and narrow and peaked distributions in second and third channel, con-
taining a relatively low amount of information. On the other hand, the supervised
FST concentrates more energy (64%) in the second channel, as the first one (i.e.
projection on Fisher’s discriminant vector) is purposely designed to exhibit good
discrimination capabilities of the plant objects. Such features render the KLT, aKLT,
and FST ideal for the coding of color images, because the channels accounting for
less energy can be effectively subsampled.
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Fig. 5 Projection of the image of Figure 3a in a variety of color spaces. Next to each channel is
shown the corresponding histogram of intensity values, and in parentheses the percentage of signal
energy contained in that component.

Unsupervised transform. In order to assess the sensitivity of the aKLT to the ran-
dom initialization of the vectors a2 and a3 in the matrix A (cf. Section 2.1), we
compute 100 different realizations of K̃ for each of the test images in Figure 4. As
shown in Table 3, the aKLT behaves consistently, and variations in PSNR perfor-
mance due to different initial values are on average approximately only 0.2%.

Furthermore, the aKLT exhibits good decorrelating capabilities. As shown in Ta-
ble 4, in the RGB domain, the channels of the test images of Figure 4 present on
average strong linear correlation. Inter-channel linear correlation is only moderately
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Table 4 Average inter-channel linear correlation of the test images of Figure 4. For the aKLT,
average results are shown, obtained using 100 different initializations (see Section 2.1).

Correlation

Transform ch. 1–2 ch. 1–3 ch. 2–3

RGB 0.84 0.71 0.91
YCbCr −0.39 0.11 −0.71
aKLT 0.04 0.09 0.11
KLT 0.00 0.00 0.00

reduced by the YCbCr, whereas the aKLT is able to achieve the almost complete
decorrelation obtained by the optimal KLT.

Supervised transforms and application-aware compression. Figure 6 provides
several visual examples of the supervised transform on a variety of different im-
ages, showing its ability to identify the objects of interest in the test images, even
when major changes occur in the scene with respect to the training data (e.g., com-
pare background appearance of the images in Figures 6u and 6v). This approach is
chiefly based on color information, therefore after learning the transform D on the
image of a black horse (Figures 6a and 6g), only the black stripes of the zebra in
Figure 6f result in a high response, while the white stripes are regarded as back-
ground (cf. Figure 6l). On the other hand, the transform D estimated from training
data in Figures 6m and 6q, is able to selectively identify only the red balloons in the
image of Figure 6p.

Figure 7 compares the approaches from an application standpoint. Color trans-
formation alone provides up to 1.26 dB improvement in PSNR of the foreground
(plant) regions relative to RGB, with the FST now obtaining competitive perfor-
mance. The supervised transforms do not show remarkable improvements with re-
spect to the other approaches, probably due to lacking decorrelation capabilities for
these images, causing losses in bit rate performance.

Supervised transform for ROI detection. The separation property of the super-
vised color transform can be further exploited in applications in which the objects of
interest can be discriminated by color features (e.g., plant objects in our dataset can
be separated from the background based on color information). Therefore, we envi-
sion the use of the supervised color transform to obtain from the transformed image
a region of interest (ROI) estimate, that can be used in an encoder with ROI coding
capability (e.g. the JPEG 2000 standard [56]). With respect to other approaches ob-
taining the ROI information from a detection module external to the encoder [46],
we propose for the first time to combine color transformation and ROI estimation
in a single framework, identifying potential ROI masks solely on the basis of the
class separation capabilities of the supervised transform, thus reducing computa-
tional overhead at the encoder.

When using the FST approach, the first channel of the FST domain, y(1)i = dT
1 xi,

corresponds to the projection on Fisher’s discriminant vector (cf. Figure 5, bottom
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(t)
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Fig. 6 Demonstration of the supervised transform, using images of: (a)-(f) horses, (m)-(p) bal-
loons, and (u)-(v) fish. For each category, a single FST was obtained, using for training, respec-
tively, images in (a), (m), and (u), and corresponding ground truth segmentations (i.e. (g), (q), and
(w), respectively). Images in (h)-(l), (r)-(t), and (x) visualize the projections of the test images on
the first component of the FST.

row). In an unseen image, to obtain an ROI estimate, Γ(D,θ ∗) ∈ {0,1}n, we decide
the class of a pixel (foreground or background) based on a single threshold θ ∗ on the
values of y(1)i . We estimate θ ∗ from our training set, maximizing the Dice Similarity
Coefficient (DSC):

θ
∗ = arg max

θ

2 · |ΓGT∩Γ(D,θ)|
|ΓGT|+ |Γ(D,θ)|

, (6)

between the ground truth of pixels, ΓGT, and the classification, Γ(D,θ), obtained
using D and threshold θ on the training data. Supervised transform D and threshold
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Fig. 7 R-D performance using the proposed transforms (in solid curves) in comparison to others
(dashed curves) on the plant image data of Figure 3 using application-aware metrics: (a)-(b) recon-
struction accuracy of the objects of interest, and (c)-(d) model error EM of Eq. (5). Results in (a)
and (c) are averaged over 19 test images.

θ ∗ are generally assumed to be obtained offline, therefore we estimate θ ∗ using a
parameter sweeping strategy. On the other hand, if an application requires that θ ∗

be obtained at the sensor, statistical assumptions on the distribution of the data (e.g.,
Gaussian) would lead to closed-form solutions for finding the optimal θ ∗ efficiently
[59]. When using the RCA approach, ROI estimation proceeds analogously.

When used in a spatial decorrelation context to estimate an ROI, combined with
the ROI coding feature of JPEG 2000, the FST + ROI approach obtains a major im-
provement at all bit rates: 2 to 8.8 dB increase in foreground PSNR, and 13 to 77%
reduction in application error (cf. black solid line in Figures 7a and 7c). When using
the same FST on a test image of Arabidopsis plants acquired under significantly
different scene conditions (Figure 3c), the FST + ROI approach proves robust, ob-
taining again best performance (cf. Figures 7b and 7d). On the contrary, although
the RCA approach is capable of detecting the regions of interest in an image in both
testing scenarios, when projecting the images in the so obtained color space, the
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(j) RCA + ROI
32.17 dB

(i) RCA
28.02 dB

(g) FST
30.67 dB

(h) FST + ROI
36.08 dB

(a) Original (e) KLT
30.54 dB

(d) aKLT
30.37 dB

(b) RGB
29.80 dB

(f) Region of
interest

30.18 dB
(c) YCbCr

Fig. 8 (a) Detail of the image in Figure 3a. (b)-(e), (g)-(j) Reconstructed images after compression
at 0.5 bpp using the JPEG 2000 standard and several color space transformations. Foreground
PSNR between (a) and each of the reconstructed versions, calculated for the plant region indicated
in (f), is also reported.

new intensity values are altered in a way that the benefits of the application-aware
transform are diminished (or surpassed) by numerical errors introduced by the com-
bination of forward and reverse color transformation and compression (cf. yellow
dashed line in Figure 7).

A visual comparison of reconstructed images after compression with JPEG 2000
and all color transforms adopted in this work is shown in Figure 8. The RGB im-
age appears oversmoothed, whereas the decorrelating transforms (YCbCr, aKLT,
and KLT) exhibit higher image fidelity and appear increasingly richer in details (cf.
Figures 8b, 8c, 8d, and 8e). The supervised FST alone already provides good re-
construction accuracy, however, the FST + ROI outperforms all other methods (cf.
Figures 8g and 8h). The artifacts introduced by the RCA are evident in Figure 8i,
and even when coupled with ROI coding the approach produces a noisy image (Fig-
ure 8j).

The results envision different use cases for the proposed approaches. The aKLT
is general purpose and can be efficiently calculated on a per image basis to target re-
construction accuracy. On the other hand, the supervised approach is best suited for
application-aware compression or enhancement scenarios, and since it does require
supervision (which can be costly to obtain at the sensor) is assumed to be computed
offline. The regularized versions of Eq. (4) are highly dependent on the free parame-
ter λ and their performance is found to lie within the bounds of the other two. When
varying the value of λ , the new transform D′ exhibits behavior very close to either
the supervised or the unsupervised transform, respectively. Therefore, it is best to
exploit the classification abilities of the supervised FST to focus bits in appropriate
places in the image, which is considerably less computationally demanding.
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4 Conclusions

We address the problem of designing image-adaptive color space transformations
for coding and enhancement applications. In recognition of the superior data-
dependent KLT with respect to fixed transforms such as the YCbCr (as also con-
firmed by our experimental results), we derive a low-complexity approximation,
the aKLT, capable of comparable performance. Our proposed aKLT achieves lower
computational complexity than other KLT approaches in the literature, which is
expected to result in proportionally reduced computation time, when devising opti-
mized implementations. This will ease adoption on resource-constrained devices or
in time-critical applications.

We also consider an application-aware compression setting, in which prior
knowledge is available on the objects of interest in the scene. We formulate a novel
approach to design color transforms with class separation capabilities, using super-
vised learning methods. Inspired by the linear discriminant analysis, we measure
class separability using the Fisher’s discrimination criterion, and adopt the Foley-
Sammon transform to obtain an orthogonal application-aware color transform. We
also adopt metric learning approaches, however they focus only on class separation
(renouncing also orthogonality) and are found to result in lower performance in a
compression context. The proposed unsupervised and supervised approaches, for
which closed-form solutions are presented, address different requirements, there-
fore we also consider optimization strategies to combine the two approaches. In the
experiments, we also showcase the use of the separation property of the supervised
transforms to detect regions of interest in an image, and inform the encoder where
to focus bit rate spatially.

In an enhancement context, the proposed supervised approach can be used to
enhance the contrast of objects of interest in the scene, incorporating also knowledge
of the application and the expert system, and facilitate human-computer interaction,
or for automatic content-aware cropping or resizing of large images for visualization
on small displays [60].

When coupled with quantizer design even greater bit rate savings are possible,
but that would in general violate standard compliance. Increased image resolution
or video applications are expected to emphasize the benefits of the proposed ap-
proaches. While we adopt the JPEG 2000 standard, our methodology is general and
can be adapted to other coding schemes. Reversible integer approximations of the
proposed transforms can also be obtained [25,26], for lossless or progressive lossy-
to-lossless compression of color images.
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