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Abstract—Plant phenotyping investigates how a plant’s ge-
nome, interacting with the environment, affects the observable
traits of a plant (phenome). It is becoming increasingly impor-
tant in our quest towards efficient and sustainable agriculture.
While sequencing the genome is becoming increasingly efficient,
acquiring phenotype information has remained largely of low
throughput, since high throughput solutions are costly and not
widespread. A distributed approach could provide a low cost
solution, offering high accuracy and throughput. A sensor of
low computational power acquires time-lapse images of plants
and sends them to an analysis system with higher computa-
tional and storage capacity (e.g., a service running on a cloud
infrastructure). However, such system requires the transmission
of imaging data from sensor to receiver, which necessitates
their lossy compression to reduce bandwidth requirements. In
this paper, we propose an application aware image compression
approach where the sensor is aware of its context (i.e., imaging
plants) and takes advantage of the feedback from the receiver
to focus bitrate on regions of interest (ROI). We use JPEG
2000 with ROI coding, and thus remain standard compliant,
and offer a solution that is low cost and has low computational
requirements. We evaluate our solution in several images of
Arabidopsis thaliana phenotyping experiments, and we show that
both for traditional metrics (such as PSNR) and application
aware metrics, the performance of the proposed solution provides
a 70% reduction of bitrate for equivalent performance.

Index Terms—image compression; JPEG 2000; ROI coding;
plant segmentation; agriculture; plant phenotyping;

I. INTRODUCTION

Plant phenotyping is a branch of biology that studies
how a plant’s genome, exposed to the interactions with the
surrounding environment, maps into phenome, that is the
observable traits of a plant. Uncovering a gene’s exact function
(“functional genomics” [1]) is of great practical interest, be-
cause important functions can be matched with agronomically
important traits, of interest to breeders. Plant breeding issues
are of utmost importance on a worldwide scale, such as plant-
based biofuels, resistance of crops to climate changes, increase
in global food demand.

Once a plant’s genome has been fully sequenced (an ap-
proach that is already of high throughput), algorithms exist
to compare sequences of unknown genes with genes whose
function is already known. Following the isolation of the
mutated gene, experiments are necessary to screen collections
of mutant plants and quantify their phenotype. The actual
phenotyping process is extremely time and effort consuming.
To discover valuable agricultural traits (e.g. growth rate, root
density, grain size, drought tolerance, product quality, yield po-

tential), replicated trials need to be carried out across multiple
environments over a number of seasons, with a considerable
amount of manual work for taking measurements. In addition,
many phenotyping techniques are destructive for the plants,
that is, they involve removing parts of the plant or even
harvesting early in the life-cycle.

This “phenotyping bottleneck” can be addressed by com-
bining novel technologies such as noninvasive imaging, spec-
troscopy, image analysis, robotics, and high-performance com-
puting [2]. Application of these tools in dedicated high-
throughput, controlled-environment facilities would improve
precision in the results and reduce the need for replication in
the field.

Currently, the solutions available for plant phenotyping are
either destructive (thus not repeatable) and low-throughput,
or high-throughput and costly. The current approach to auto-
mated phenotyping relies on imaging sensors and processing
station(s). Usually these units are tightly coupled (i.e., sensing
and analysis occur in the same physical location), which limits
(a) the scalability of the system (a throughput increase requires
more processing stations), (b) the ease of deployment to new
facilities (e.g., it is hard to move a cluster of PCs), and (c)
the efficiency of using the available computational resources
(e.g., idle time is not utilised).

The combination of low-cost smart sensors with Internet
connectivity [3] and a cloud infrastructure (e.g., the iPlant Col-
laborative project (http://www.iplantcollaborative.org/)) can
mitigate the above limitations. To keep the cost of the sen-
sor low, minimal robotics and minimal computational power
is assumed, with the bulk of analysis occurring at remote
infrastructures. However, this novel direction requires the
transmission of imaging data to the now disconnected pro-
cessing units. Phenotyping experiments may involve hundreds
of plants, imaged several times per day, over periods of weeks,
thus yielding vast amounts of image data. Therefore, both
transmission and archival of full resolution uncompressed
images can become soon prohibitive. While repeatability of
phenotyping experiments is highly desirable (and would be
hindered by discarding images), indiscriminate compression
for archival purposes may degrade the quality of the data and
compromise its utility.

Motivated by findings of Soyak et al. [4], where an
application-aware approach to video compression yielded an
80% reduction in bandwith requirements, in this paper we
propose an application-aware approach for the compression
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Fig. 1: Graphical representation of the proposed distributed sensing and analysis architecture.

of images in phenotyping environments. We assume that the
sensor is aware of its content (i.e., it is imaging plants, as
shown in Fig. 2a) and is aware of the final task of extracting
features for analysis, which occurs automatically at the cloud
and is based on automated computer vision algorithms, as
Fig. 1 illustrates. We evaluate our proposed approach in
an application-oriented fashion, aiming at maximising both
compression efficiency and analysis accuracy at the central
location, while maintaining low complexity.

The rest of the paper is organised as follows. In Sec. II
we describe our proposed framework for distributed sensing
and analysis of plant images from phenotyping experiments.
Experimental results are discussed in Sec. III, while Sec. IV
offers concluding remarks.

II. PROPOSED FRAMEWORK

We propose a distributed architecture for plant phenotypes
collection (see Fig. 1), which is characterised by a low
computational power sensor (or a grid of sensors) that acquires
time-lapse images of a scene containing plants and sends them
to a receiver, which we assume to be equipped with higher
computational and storage capacity (e.g., a cloud computing
service).

An image is acquired by the camera, and a region of interest
(ROI) estimation module running on the sensor estimates on
the original uncompressed image an ROI indicating where
(most likely) plants are located. The raw image is then encoded
with the JPEG 2000 compression standard taking advantage of
its ROI coding capabilities. Then, the bit stream is transmitted
over a link (e.g., Wi-Fi or cabled connection) to a receiver
(e.g., a remote workstation, or cloud system), where a decoder
reconstructs the image, and automated analysis follows.

On the receiver, an analysis system processes each incoming
image of the time-lapse sequence, in order to extract visual
phenotypes relevant to plant scientists. Usually, plant objects
are first localised, then, a more sophisticated segmentation
algorithm is employed to accurately delineate the plant bound-
aries against the background. The output of this process is
a collection of masks that identify pixels belonging to each
of the plants in the scene. Such masks enable the extraction
of image features (e.g., projected rosette area, average colour
intensity) correlated with phenotyping traits.

The output of the analysis system is also utilised to generate
feedback information useful for the sensor, to improve its
ability in detecting plant objects.

A. Lossy Image Compression with Region-of-Interest Coding

In application-oriented image compression a particularly
useful feature is Region-of-Interest (ROI) coding. An ROI is a
region in an image that is relevant to the user and, thus, should
be preserved in the lossy compression process, by encoding
it with better quality than the background. An ROI (possibly
composed by multiple objects) in an image I , can be repre-
sented as a binary mask M , where M(i, j) = 1 means that
the pixel at that location is considered part of the foreground,
whereas M(i, j) = 0 means that the corresponding pixel is
part of the background.

In order to compress the acquired images, our system
utilises the JPEG 2000 standard [5], based on a Discrete
Wavelet Transform (DWT). Compliance to well established
standards is preferred in this context to a customised com-
pression scheme, to allow portability of the acquired images
virtually on any platform and system, without the need for
a specialised decoder. The JPEG 2000 standard also offers
ROI coding as a functionality, which is implemented with the
Maxshift method [6], described in Part I of the standard. By
appropriately scaling the wavelet coefficients, the information
related to the ROI is placed in higher bit planes than the
background, thus eliminating the need to transmit the ROI
shape explicitly. In the bit-stream formation process, bits
pertaining the ROI are placed first, and a truncation of the
bit stream allows to satisfy a bit rate requirement, while
preserving the regions of interest to the highest quality possible
for that bit rate.

In plant phenotyping applications, the regions of interest
(ROI) in an image should contain plants, and several different
approaches for estimating such ROI can be considered. How-
ever, the method should provide smooth ROIs and as accurate
as possible (to eliminate bits spent on non-relevant portions of
the image), without being computationally intensive.

B. Proposed ROI Estimation with Feedback

As we will see in the results section, there are several
challenging aspects in these images, such as the presence
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Fig. 2: Examples of ROI masks for the original image (a): proposed method (b), fixed pots (c), and Otsu’s thresholding (d).

of moss. While simple thresholding algorithms can provide
rudimentary foreground identification, they are often far from
the best solution. More sophisticated approaches are neces-
sary, however they require additional computational resources.
Thus, in order to increase the robustness of the ROI estimation
component, while keeping its computational complexity low,
we propose to shift part of the computational burden on the
receiver. This approach can conveniently drive the sensor in
detecting plant objects, by sending some helpful feedback
information ϕ. Such feedback is generated by the analysis
system (e.g., based on previously processed images, or on
additional information from an external knowledge base),
and is transmitted to the sensor to improve its compression
capabilities in an application-oriented fashion.

On the receiver side, we assume the possibility of training
a supervised binary classifier to classify pixels in an image as
belonging to foreground (plant) or background. For the classi-
fier to correctly learn the appearance of plants, an initialisation
step can be considered, such that the sensor sends the first
acquired image uncompressed. Alternatively, a model from a
previous experiment (with plants of the same species) could
be employed.

We use a multivariate Gaussian Mixture Model (GMM) to
learn the plant intensity distribution. Accordingly, we model
the d-dimensional feature vector x ∈ Rd representing the
intensity values of a pixel location, as belonging to a mixture
of multivariate Gaussian distributions. Thus, each component
of the mixture is defined as

p(x|Θj) =
exp

(
− 1

2 (x− µj)
>Σ−1j (x− µj)

)
(2π)

d
2 |Σj |

1
2

, (1)

where Θj = (µj ,Σj) are the parameters of the j-th component
of the mixture (i.e., mean µj and covariance Σj). An M -
component mixture model is therefore characterised by the
density function

p(x|Θ) =

M∑
j=1

πjp(x|Θj), (2)

where π1, . . . , πM are the mixing coefficients, and each πj
is the prior probability of pattern x belonging to the j-th
component, such that 0 ≤ πj ≤ 1, for j = 1, . . . ,M , and∑M

j=1 πj = 1. The parameters of the distribution and the
mixing coefficients Θ = (M,πj , µj ,Σj), are estimated from

available plant data samples, by maximising the log-likelihood
function

L(Θ) =

N∑
i=1

log

 M∑
j=1

πjp(xi|Θj)

 , (3)

using the Expectation-Maximisation algorithm [7].
We represent pixel intensities in the 1976 CIE L*a*b*

colour space [8], because of its capability to decorrelate
luminance (encoded in the L* component) from chrominance
(encoded in the a* and b* components), which makes it
less susceptible to lightness variations than the original RGB
colour space. This process is executed at the receiver, thus
learning an appearance model of the plants.

At the encoder side, ROI estimation is attained by first
converting the acquired image to CIE L*a*b*. (To reduce
computational cost on limited-resource devices, the conversion
is performed using a colour look-up table (LUT) [9].) Then,
the intensity vector of each pixel is evaluated in Eq. (2), to
obtain the probability of that pixel belonging to a plant object.
Pixels having a probability above a given threshold T are con-
sidered foreground and, thus, included in the ROI, while pixels
with probability below the threshold T are assigned to the
background. Finally, as the thresholding operation may result
in noisy and fragmented regions, which increase the com-
plexity of the ROI (thus penalising compression efficiency),
the obtained binary mask undergoes a post-processing: small
objects removal (a fixed threshold for the area is set to Amax

pixels), morphological dilation, and hole filling.
Although the encoder can use fixed thresholds T , Amax,

here we utilize the receiver and its feedback to suggest optimal
thresholds. In essence the receiver is aware of the ROI esti-
mation algorithm on the encoder. The thresholds T , Amax are
estimated, based on the previously observed image of the time-
lapse sequence and its segmentation mask. Optimal values
are found that maximise the spatial overlap, measured by
Dice Similarity Coefficient, DSC = 2 · |S ∩ S′|/|S|+ |S′|,
between the segmentation mask S of the plant segmentation
algorithms, and the binary classification S′ obtained with the
GMM.

Both learning the GMM and identifying the optimal thresh-
olds T and Amax are computationally expensive tasks, hence
unfeasible on limited-resource devices. In order to overcome
this limitation, we propose to run these tasks at the receiver,



and assume it to send ϕ = {Θ, T,Amax} as feedback
information to the sensor. We should note that the feedback
vector ϕ is composed by few double precision numbers, hence
the network overhead added for their transmission amounts
approximately to only a hundred bytes.

C. Application-Specific Evaluation Metrics

Lossy image compression algorithms are usually evaluated
by measuring quality of reconstruction of the original signal,
and typically Peak Signal-to-Noise Ratio (PSNR) is employed
as a metric. However, PSNR alone may not be sufficient
in particular contexts, such as when evaluating application-
specific systems, and in fact using application aware metrics
may result in bitrate savings [4].

As part of our methodology, along with traditional PSNR,
we propose to evaluate compression with specialised metrics,
in order to take into account several different aspects of the
problem at hand. In particular, bearing in mind the final
application and prior information on the content (e.g., top
view of plants), we are interested in designing a compression
scheme that does not affect the accuracy of the segmentation
algorithm, and preserves the low-level features used by image
analysis algorithms to extract visual phenotypes.

Let I , Î be original and decoded images, respectively,
and S, Ŝ the corresponding segmentation masks obtained
at the receiver side. In our context of application-oriented
compression, we consider the segmentation mask S as ground
truth for evaluating the segmentation accuracy. This represents
the best-case scenario for a given algorithm, as suggested
in [4]. Accordingly, we measure the quality of the content, by
comparing original and reconstructed images, only for pixel
locations belonging to the segmentation mask S. Therefore, in
our attempt to assess the performance of our system without
explicitly performing actual phenotype analysis, we adopt the
following set of image based metrics, that quantify the fidelity
of the images.

1) Precision, is the fraction of pixels in the segmentation
mask Ŝ that matches the ground truth S;

2) Object-level Consistency Error (OCE) [10], is based on
Jaccard Similarity coefficient (i.e., it measures the spatial
overlap between binary objects), but is more sensitive to
over- and under-segmentation;

3) Structural SIMilarity (SSIM) index [11], measures loss
of correlation, contrast distortion, and luminance distor-
tion in the reconstructed image Î;

4) ExG Normalised Mean Squared Error (NMSE) between
Excess Green (ExG) transforms of I and Î;

5) Gradient NMSE between image colour gradient maps of
I and Î .

All of these metrics take on values between 0 and 1, with larger
values indicating higher agreement between algorithmic result
and ground truth. Precision and OCE address the accuracy of
the segmentation mask, while the remaining metrics measure
the preservation of the content. SSIM takes into account
structural information, the ExG domain is often used in plant
localisation tasks, and the gradients are a low-level feature

utilised by several computer vision algorithms (e.g., methods
aiming at segmenting individual leaves may rely on edges to
distinguish overlapping leaves).

In order to obtain a single number representing the overall
accuracy of the system at a given bit rate, we linearly combine
the aforementioned metrics, as Accuracy =

∑5
i=1 αimi,

where mi are the employed metrics. The αi parameters allow
to increase or reduce the effect of each metric, depending on
its relevance for the application (e.g., if rosette area is the only
trait of interest, SSIM and gradient accuracy may be assigned
a lower weight).

III. RESULTS AND DISCUSSION

In this section we first describe our experimental set-up,
which includes the data sources and computational environ-
ment, as well as the process used to segment plants on the
receiver. We also describe other computationally efficient ROI
estimation methods which are used for comparison.

A. Experimental Setup

We evaluated our proposed system on time-lapse images
of Arabidopsis thaliana rosettes, acquired with a 7 megapixel
commercial camera (Canon PowerShot SD1000), in a small
laboratory setting [3]. Figure 2a shows an example image from
the dataset. We implemented our system using Matlab R2011b
by Mathworks, on a machine equipped with Intel Core 2 Duo
CPU E8200 2.66 GHz and 4 GB memory, running 64-bit
Linux. We adopted the JJ2000 software implementation (from
http://code.google.com/p/jj2000/) of the JPEG 2000 standard,
to compress the original images at various bit rates with and
without the ROI. For evaluation purposes, we also included
in the comparison the traditional JPEG standard, using the
codec implementation available in Matlab. The αi weights in
Accuracy were set to 0.125 for OCE and gradients, and for all
other metrics were set to 0.25. For the proposed approach, the
receiver estimated the GMM and feedback based on another
image (and its segmentation) which was not used in our
experiments to eliminate bias.

1) Plant Segmentation: Although our framework is generic,
in our experiments we adopt a state-of-the-art approach to
plant phenotyping that incorporates incremental learning via
appearance models and a level set segmentation [12]. Briefly
described, when processing a new incoming image, the analy-
sis system employs several steps including a localisation step
to separate plants (implemented using a K-means clustering
algorithm), a level set segmentation algorithm to accurately
delineate plant objects from the background, a plant labelling
algorithm to assign disconnected objects to same plant, and
also learns an appearance model, which assists the localiza-
tion and level set initialisation. In the following, due to the
pertinence to the performance of the system, we outline the
level set algorithm. It is based on an active contour model
for vector-valued images [13], which is capable of robustly
detecting objects characterised by a complex and fragmented
shape (e.g., a plant rosette). For an image I with N channels,
the model is initialised with an initial contour in the spatial
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Fig. 3: (a) Original image and (b) a detail, reconstructed after compression at 0.2 bpp with different algorithms: (c) proposed
method, (d) plain JPEG 2000, and (e) JPEG.

domain, and then evolves this contour with a level set method,
minimising the following energy functional:

F
(
c+, c−, φ

)
= µ · Length(C)

+

∫
in(C)

1

N

N∑
i=1

λ+i e
+
i (z) dz

+

∫
out(C)

1

N

N∑
i=1

λ−i e
−
i (z) dz, (4)

where φ is the level set function, and e+i (z) =
∣∣Ii − c+i ∣∣2,

and e−i (z) =
∣∣Ii − c−i ∣∣2, for i = 1, . . . , N . The contour

C determines the boundary between foreground and back-
ground regions; c+i and c−i are, respectively, foreground and
background average intensity for the i-th component; λ+i , λ−i
are positive parameters weighing each channel; and µ is the
parameter of the contour length term. By operating on multiple
channels (in our context a* and b*), this model can detect
objects present in at least one of the channels.

For a fair comparison of the different compression al-
gorithms, and to appreciate the true effect of compression
on segmentation accuracy, the initial contour for the active
contour model was fixed for each image and kept constant
across the experiment. This level set process is executed for
each image (compressed and uncompressed) providing the S,
Ŝ segmentation masks needed for performance evaluation.

2) Baseline ROI approaches: With the goal of demonstrat-
ing the accuracy of our method, and the complexity of finding
a good ROI without computationally intense processes, we
implemented two baseline ROI extraction approaches. One
that relies on fixed placement of the objects in the scene, and
one that estimates automatically a foreground mask based on
intensity thresholds.

Figure 2c shows an ROI mask where pots are assumed
to be in fixed positions, and is provided to the encoder.
This approach puts strict constraints on the user, because the
positions of the objects have to be manually coded into the
ROI detection module and must be preserved throughout the
whole duration of the experiment. Any deviation (e.g., plants
may shift when watered) would result in the loss of accuracy
for portions of plants out of the ROI, which will affect the
validity of the phenotyping analysis.

To implement the second baseline approach, we transform
the original RGB image to the Excess Green (ExG) domain,
with ExG = 2G − R − B, where R, G and B are red,
green, and blue channels of the RGB colour space, respec-
tively [14]. Then, we use Otsu’s method [15] to identify an
optimum threshold. Pixel locations having an ExG value higher
than the threshold are included in the ROI mask, while the
remaining pixels are considered background. Similarly to the
proposed method, the obtained binary mask undergoes a post-
processing: small objects removal (a fixed threshold for the
area is set to Amax = 20 pixels), morphological dilation, and
hole filling.

B. Results

Figure 2 shows examples of the ROI masks used by the
encoder based on the proposed and baseline approaches. It is
evident that the proposed method provides more accurate ROI
masks without actually increasing the complexity in the sensor.
The other methods lead to over-segmentation either by design
(fixed squares) or due to complexity in the scene (presence
of moss is a challenging problem). This results in bits spent
encoding information not related to our true objects of interest.
This fact can be appreciated also visually in Fig. 3. Traditional
JPEG exhibits colour distortion and blocking artifacts (due
to its block-based discrete cosine transform). On the other
hand, JPEG 2000 introduces a blurring artifact that over-
smooths textured regions (some algorithms rely on texture
information, that would in this case be lost). When introducing
ROI coding with the proposed system, JPEG 2000 retains
as much information as possible from the foreground and
preserves well edges and texture, while roughly encoding the
background.

In order to quantify the effects of using ROI coding and
feedback to the sensor across bit rates, we evaluate application-
specific accuracy (as defined in Sec. II) and PSNR for different
compression schemes: (a) JPEG, (b) JPEG 2000, (c) JPEG
2000 with rectangular ROI assuming fixed pot positioning,
(d) JPEG 2000 with ROI obtained with Otsu’s thresholding,
and (e) proposed method.

PSNR results (Fig. 4a) confirm the superiority of our
method in visual findings: JPEG 2000 shows an increase of
up to 2 dB with respect to JPEG, while up to 8 dB can be
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Fig. 4: PSNR (a), and application-specific accuracy (b), at
various bit rates.

gained by using ROI coding. The curves in between illustrate
the benefit of a more accurate ROI mask, as less bits are spent
on the background, in favour of the foreground.

Application-specific accuracy (Fig. 4b) reflects an analogous
ranking of the systems (curve for JPEG was omitted for
clarity). The proposed approach for estimating the ROI with
feedback from the analysis system provides higher accuracy in
the segmentation, and preserves better the content, in terms of
fidelity for image features that can be extracted for subsequent
analysis.

IV. CONCLUSIONS

We propose a distributed sensing and analysis framework
for plant images from phenotyping experiments. While such
approach keeps the cost of the sensor low, and allows to
carry out sophisticated image analysis tasks (by exploiting the

potential of cloud computing infrastructures), it also introduces
the need for compressing the transmitted data. We investigate
the effects of lossy image compression on plant segmentation,
and in order to keep the performance consistent with a scenario
where no compression occurs, we propose a smart sensor,
which compresses the acquired images using the JPEG 2000
standard and ROI coding, and adopts a Gaussian Mixture
Model to find an accurate estimate of the ROI. In order to
relieve the sensor from learning the GMM, we propose to
shift such computational burden to the cloud, while the few
parameters describing the model are sent as a feedback to
the sensor. Experimental results confirm the efficacy of the
proposed approach, both in the fidelity of the reconstructed
images, and in the accuracy achieved in the application (i.e.,
the plant segmentation).
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