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Abstract—Image segmentation metrics have been extensively
used in the literature to compare segmentation algorithms among
each other, or relative to a ground-truth segmentation. Some
metrics are easy to compute (e.g., Dice, Jaccard), others are
more accurate (e.g., the Hausdorff distance) and may reflect local
topology, but they are computationally demanding. While certain
attempts have been made to create computationally efficient im-
plementations of such complex metrics, in this paper we approach
this problem from a radically different viewpoint. We construct
approximations of a complex metric (e.g., the Hausdorff distance),
combining a small number of computationally lightweight metrics
in a linear regression model. We also consider feature selection,
using sparsity inducing strategies, to restrict the number of
metrics employed significantly, without penalizing the predictive
power of the model. We demonstrate our methodology with image
data from plant phenotyping experiments. We find that a linear
model can effectively approximate the Hausdorff distance using
even a few features. Our approach can find many applications, but
is largely expected to benefit distributed sensing scenarios where
the sensor has low computational capacity, whereas centralized
processing units have higher computational capabilities.

I. INTRODUCTION

Image segmentation is the process of partitioning an image,
according to a criterion that depends on the application. A
vast amount of approaches have been proposed for image
segmentation, operating on a variety of image features, guided
by different criteria, and founded on established mathematical
and statistical frameworks (see [1] for a comprehensive survey
and a taxonomy of approaches).

The quest for segmentation algorithms has been also met
with a search for appropriate evaluation metrics. Such evalu-
ation allows for the comparison of different approaches, the
validation of a result against a ground truth, or the optimal
choice of parameters of an algorithm for a specific application.

While human evaluation is subjective and not automated
(thus, inherently low-throughput), objective yet simple metrics
(such as Dice or precision/recall) frequently prove inadequate
in distinguishing “good” segmentations from “bad” ones, ac-
cording to human intuition of the application.

To overcome this limitation, more sophisticated metrics
have been proposed that emphasize particular types of error
(e.g., over- and under-segmentation [2], topological disagree-
ments such as region splitting and merging [3]), can be robust
to noise (e.g., small boundary displacement [4], white noise
[5]), or correlate well with human intuition [3], [5], [6].

The Hausdorff distance [5] has been used in a variety of
applications, including the validation of image segmentation
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results [7], [8]. However, it is characterized by high computa-
tional complexity. Thus, considerable research effort has been
put in designing efficient algorithms for its calculation (either
precise or approximate) in relation to specific contexts (e.g.,
polyhedral objects represented as polygonal meshes), while its
exact calculation in the most general case of point sets (e.g.,
when comparing segmentation results) still lacks an efficient
solution [9].

In this paper we approach this problem from a different
viewpoint. Rather than investigating an efficient implementa-
tion of such metric, or defining a new metric that behaves
closely to it in some scenarios, we consider a data driven
approach. We propose to learn from the data a (linear) model of
an accurate (although computationally complex) metric, using
as features simpler to compute metrics. To demonstrate our
approach we use the Modified Hausdorff Distance [5], for
which we learn efficient linear approximations. We test our
methodology on a dataset of plant image segmentations ob-
tained from image based plant phenotyping experiments [10],
examples of which are shown in Fig. 1. We find that a linear
model is effective at approximating the Modified Hausdorff
Distance, and feature selection strategies allow to reduce the
number of metrics employed, without penalizing prediction
accuracy.

A prime example of where such a framework can be
utilized is in sensing devices with limited computational and
storage capacity, which may lack the necessary resources to
compute complex metrics, when operating on high-resolution
images (e.g., low-cost sensors for plant phenotyping exper-
iments [11], [12]) or under real-time considerations (e.g.,
autonomous vehicle navigation via object matching [5]).

The rest of the paper is organized as follows. In Sec. II,
after describing the Modified Hausdorff Distance and the
surrogate metrics, we learn approximations of the complex
metric. In Sec. III we use selection algorithms to reduce
the number of metrics employed. Experimental results are
discussed in Sec. IV, while Sec. V offers concluding remarks.

II. APPROXIMATE METRICS VIA LEARNING

Let I be an image, S its ground-truth segmentation, and S
the segmentation obtained by an algorithm, where both S and
S are binary maps of the same size of I, with pixel values
set to 1 to denote foreground (e.g., plant), and pixel values
set to 0 to denote background (e.g., tray, pot, earth, moss).
The thesis of this paper is that certain complex segmentation
evaluation metrics (such as the Modified Hausdorff Distance)
can be approximated using linear combinations of simple to
compute metrics.
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Fig. 1: Example segmentations of the original image in (a). Shown row wise: (b) ground truth, (¢) K-means clustering, (d) Rosette
Tracker [13], (e) acti/vgontour model [10]. Below (c)-(e), the corresponding values of the Modified Hausdorff Distance [5], and
its approximation (MHD), with respect to the ground truth in (b).

While the framework is generic and can accommodate any
complex metric, in the following we use the Modified Haus-
dorff Distance (MHD) as a motivating example of a complex
metric. This metric has proved useful when developing plant
image segmentation algorithms. We observed that MHD relates
well with the human intuition of the problem at hand, and
is effective at penalizing segmentations containing errors that
would jeopardize the accurate extraction of visual phenotypes
(e.g., missing leaves, cut stems, holes inside leaves). Notably,
MHD can be expressed in units of length (e.g., millimeter),
easing the interpretation.

However, MHD is computationally expensive, and not
feasible on sensing devices with limited storage and compu-
tational capacity. Hence, we propose to learn a (linear) model
of the MHD from the data, based on (computationally) easier
metrics as features.

In the following sections we begin with defining the MHD,
the easier metrics, and proceed by presenting the linear model
and feature selection algorithms.

A. Modified Hausdorff Distance

The Hausdorff distance measures the distance between two
point sets as the greatest of all the distances from a point in
one set to the closest point in the other set. It is defined as

fu (8, 8) = max{ sup inf d(a,b), sup infd(a,b)}, (1)
a€S bes beS a€sS

where S and S are two non-empty subsets of a metric space
and sup and inf denote supremum and infimum, respectively.
Dubuisson et al. [5] proposed a Modified Hausdorff Distance
and demonstrated its efficacy for real-world applications. Let

S={ay,...,an}and S = {by,.. .,by } be sets of points. A
directed distance between S and S can be defined as
R 1 N

where d(a,S) = min, g |la — b[|2 is the distance between a

point a € S and the set of points S, and ||a — b||2 denotes the
Euclidean distance between a and b. The two directed distances
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d(S,S) and d(S, S) are then combined to define an undirected
distance measure:

funp(d(S, 9),d(S, S)) = max{d(S, S),d(S,S)}.  (3)

The MHD is characterized by a large discriminatory power,
and robustness to noise. However, the computational com-
plexity of its exact calculation can be challenging when the
segmentation masks (the point sets) contain millions of pixels.

B. Low-Complexity Segmentation Accuracy Metrics

Calculating the MHD involves a geometric search problem
in a vast space, in order to reach a solution and output the
distance between two segmentations. To lower the computa-
tional requirements, we considered the following set of metrics
to model the desirable behavior of the MHD, and quantify
segmentation accuracy.

1)  Statistical Error (StatErr), is the sum of false positive
and false negative errors, that is the number of
misclassified pixel locations;

2)  Precision, is the fraction of pixels in the segmentation
S that matches the ground truth S;

3)  Recall, is the fraction of ground-truth pixels contained
in the segmentation S

4)  Rand Index [4], measures the similarity between two
segmentations as the frequency with which S and S
agree on the classification of pairs of pixels;

5)  Variation of Information (Vol) [14], measures the
distance between two segmentations as a linear ex-
pression involving entropy of S and S, and their
mutual information;

6) Jaccard Similarity Coefficient (JSC) and Dice Sim-
ilarity Coefficient (DSC) are used to quantify the
spatial overlap between S and S;

7)  Object-level Consistency Error (OCE) [15], is based
on the Jaccard Similarity Coefficient (i.e., it measures
the spatial overlap between binary objects), but is
more sensitive to over- and under-segmentation;

8)  Global Consistency Error (GCE) [2], measures subset

relationship between S and .S, based on local overlap;
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Fig. 2: Examples of synthetic errors in the segmentation of the
original image (top left). Below each image, the corresponding
values of exact/M\odiﬁed Hausdorff Distance [5], and its
approximation (MHD), with respect to the ground truth (top
right).

9) Assuming a connected component labeling of the
objects in the error mask (i.e., false positive and neg-
ative pixels), their number (CC-count), the error with
maximum size (CC-max), their average size (CC-
mean), and the standard deviation in size (CC-std).
These metrics were inspired by application specific
metrics, e.g., [6].

Calculating the above metrics is significantly less com-
plex than the MHD. They do not require any optimization
procedures and most of them can be calculated in a single
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pass of the segmentation masks. Only the last class requires
connected component labeling that is slightly more complex,
although efficient implementations exist. Additionally, several
groups of such metrics share common intermediate steps for
their computation, hence favoring optimized implementations.
Our goal is to construct linear combinations of the presented
surrogate metrics, to approximate the behavior of the MHD
with simple pixel processes.

C. Modeling Complex Metrics

We used linear regression to learn from the data the
relationship between the MHD and the set of surrogate metrics
presented in Sec. II-B. We use a linear regression since it is
computationally efficient; other approaches such as support
vector regression [16] and random forest regression [17],
while they have shown to have better performance in some
applications, they can be significantly more demanding com-
putationally and create models that are less interpretable. As
we will show in the results section, linear regression adequately
fits the problem at hand.

A linear regression model can be formulated in matrix
notation as

y=Xp, “

where y € R"™ is called the response (i.e., the MHD values),
X € R"*P is the design matrix (i.e., the collection of surrogate
metrics), and 3 € RP contains the regression coefficients,
which are obtained from the pseudo-inverse solution 3 =
X\y. In order to preserve the non-negativity of the response,
we calculate the predicted value y,ow € R for a new sample
Tnew € RP, as Ypow = 2H(2), where z = xL_ 3, and H is
the Heaviside step function.

III. SELECTION ALGORITHMS

We also investigated the possibility to identify appropriate
subsets of surrogate metrics (Sec. II-B) without loss of per-
formance, using feature selection strategies based on sparse
approximation algorithms. The sparse solution not only elimi-
nates features (in our context the surrogate metrics) that are un-
necessary, but also creates a more interpretable model. In this
paper we analyze two popular approaches that originate from
the sparse approximation field: convex optimization and greedy
iterations. While sparse penalty terms have been previously
and successfully proposed for regression (e.g., Lasso [18]),
in our approach we explicitly impose the maximum allowed
representation error, with respect to the model obtained with
the full support of predictors.

A. {1 Optimization-Based Selection Algorithm

The first algorithmic approach involves the utilization of
the /1 norm optimization problem, that has been used success-
fully in sparse representation and model reduction applications.
We propose a variation of the Iterative Reweighted ¢; (IRL1)
minimization [19], that was shown to produce some of the best
results in terms of model reduction capabilities, in the family
of convex optimization methods.

IRL1 algorithm. Given response y € R™, design matrix
X € R™*P, maximum number of iterations M, and target
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TABLE I: Example regression coefficients estimated on the entire dataset and corresponding R? statistic.

Model B coefficients R?
StatErr Precision Recall Rand Vol JSC DSC OCE GCE CC-count CC-max CC-mean CC-std

No selection -1.18 -2.15 -3.30 -2.63  -0.12 338 0.04 -0.05  -1.22 0.02 0.03 -0.02 0.01 0.902

IRL1 0 -1.85 -2.81 -0.78 0 2.81 0 -0.05  -0.77 0.01 0 0.01 0 0.895

Greedy -0.90 -2.14 -3.27 -2.17 0 3.36 0 -0.05  -1.18 0 0 0 0.01 0.895

representation error € € R, return the sparse solution 3 € RP
such that ||W 3|1 is minimized under the error constraint.

For iterations: k =1,..., M
1) If k=1 then W = I, otherwise compute the new
weights in the diagonal matrix W:
Wii=1/(16il +¢), 0<exl, i=1,...,p. (5
2)  Solve the new optimization problem:
B = argmin |[[Wg|. (6)

ly—XBll2<e

Notice that in the first iteration IRL1 solves the actual ¢;
optimization problem. The next iterations refine this result by
adding weights to the problem, such that if a coefficient of
the solution is large in absolute value, the weight is small.
Conversely, if a coefficient is small in absolute value, the
weight is large (we try to drive the coefficient exactly to
zero). Due to this improvement, IRL1 consistently outperforms
regular /; optimization procedure [19].

B. Greedy Iterations-Based Selection Algorithm

The second optimization strategy in this paper uses op-
timized orthogonal greedy iterations to gradually eliminate
design patterns that cause the smallest model error increase,
while the representation error constraint is still satisfied.

Greedy algorithm. Given response y € R", design matrix
X € R™ P, and target representation error € € R, return the
sparse solution 8 € RP and its support set .S optimized under
the error constraint.

e  Given initial support S* = {1,...,p},
e For iterations: k =1,...,p
1) Tterations: j=1,...,p—k+1
a)  Eliminate from the support S* the ;"
column to get the active support A =
Sk S Jk
b) Solve X084 =y.
©) ¢ =|y—XaBallz.
2) Find the minimum error increase jo =
argmin e.
3) If € > ey, stop iterations and return support
S = S*, otherwise continue with S*+1 =
Sk — Gk
Jo
e  Get final solution 3 = X\y on S.

The greedy method reduces the support of the solution by
removing, at each iteration, the design pattern that offers the
lowest increase in the representation error, while still under the
target imposed representation error. Also, the Greedy approach
does not require any parameters, while IRL1 requires two
parameters (M, c¢) to be selected a priori by the user.

Image Processing
Image Segmentation

IV. RESULTS AND DISCUSSION

The aim of our evaluation is to demonstrate the appropri-
ateness of a linear model for predicting the MHD, and assess
the benefit of reducing the number of features employed, using
selection algorithms. We first describe the plant segmentation
dataset used and the experimental validation employed (cross
validation), and conclude with results and their discussion.

A. Plant Segmentation Dataset

We conducted our experiments on a dataset of 222 seg-
mentations of Arabidopsis plant images (~ 0.14 megapixel).
The dataset was composed of 62 algorithmic results and
160 synthetic segmentations. Each sample of the dataset was
accompanied by the corresponding ground-truth segmentation
obtained manually, which was used to compute the accuracy
metrics described in Sec. II.

The algorithmic results (see Fig. 1 for an example) were
obtained using four different image segmentation methods
previously proposed to segment plants in images:

e K-means clustering on pixel intensity values (com-

monly used in plant image segmentation [20]);
Rosette Tracker software [13];

vector-valued active contour model operating on pixel
color intensities [10];

vector-valued active contour model operating on color
intensity and texture features [10].

The synthetic data (see Fig. 2) were obtained by introduc-
ing a variety of errors commonly encountered in this context
(e.g., missing object parts) in the ground-truth segmentations.
The synthetic data were generated in a computational manner,
easing the process of obtaining training data to learn a model of
a complex metric. While the algorithmic data contain mixed
types of errors, the synthetic data represent specific classes
(e.g., resulting from a biased segmentation), overall accounting
for greater variability in both type and amount of errors.

Figures 1 and 2 show examples of plant segmentations,
and the corresponding value of the MHD. The MHD penalizes
more boundary displacements (e.g., cut leaf), and holes inside
the object, while remaining robust to noise (e.g., scattered
noise in the background, or noisy border lines). Also critical
in the context of this paper, it penalizes under-segmentation
that causes splits in the object (Fig. 2). In addition, the MHD
exhibits a linear behavior with the amount of error introduced,
rendering it suitable for linear regression.

The metrics presented here were implemented (using Mat-
lab release 2012b) and their values were recorded. Prior to
fitting any model, the metrics in the design matrix X were
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TABLE II: Average selection rates for inclusion of the metrics in the model, obtained from K-fold cross validation.

Model Selection Rate (%)

StatErr  Precision Recall Rand Vol JSC DSC OCE GCE CC-count CC-max CC-mean CC-std
IRLI 20 100 100 80 20 100 20 100 70 80 20 40 20
Greedy 60 100 100 90 0 100 10 100 90 40 10 10 20

normalized to mean O and standard deviation 1, while the
responses y were centered on the mean. Although this step is
not necessary, it renders the regression coefficients comparable
and eases discussion.

B. Experimental Settings

To demonstrate the generalization capability of the linear
model, a K-fold cross validation strategy where K = 10 was
employed, with random splits of the original data into train-
ing/testing sets. As a goodness-of-fit measure, the coefficient of
determination R? = 1— (S5Se;;/SSs0t) Was used, where SS;,
is the sum of squared residuals, and 5SS, is the total sum of
squares. At each round of the cross validation, the R? was
calculated on both the training set, to evaluate the goodness of
fit, and the testing set, to assess the capability of the model of
generalizing to previously unknown data samples.

For the IRL1 algorithm M = 5, and ¢ = 107 in Eq. (5)
were chosen empirically. For both Greedy and IRL1 the target
error € was chosen such that an increase in the representation
error of up to a 4% of error of the full model was allowed.
All experiments were executed on a machine equipped with
Intel Core 2 Duo CPU E8200 2.10 GHz, 3 GB memory, and
running 64-bit GNU/Linux.

C. Results

Table I shows an example of standardized regression coeffi-
cients of a linear model using all features learned on the entire
dataset, to study the contribution of the surrogate metrics.
The R?> = 0.9 supports the validity of a linear model in
representing the MHD, as 90% of the response variation in the
data can be explained using a linear relationship. Precision,
Recall, Rand, and JSC exhibit high coefficient magnitude,
providing the largest contribution to the linear approximation
of the MHD. Conversely, VoI, DSC, and OCE have small coef-
ficients, as they convey similar information to JSC. In addition,
the last group of metrics based on the connected component
labeling (which can be less computationally efficient) has small
coefficient magnitudes. Figures 1 and 2 report predicted values
of the MHD for some example images (excluded from the
training set), using the full linear model.

Similar conclusions can be obtained by optimizing which
metrics are chosen using the selection algorithms presented
previously (Table I). Allowing a 4% representation error, both
IRL1 and Greedy selection strategies halved the number of
predictors (by setting to O the coefficients of the discarded
ones) with minimal reduction in R2. These predictors (except
CC-count, which is occasionally included) are underused also
when considering the K'-fold cross validation (Table II shows
the percentage of times a feature was selected).

The outcome of the K-fold cross validation with respect
to R? is shown in Table III. The full linear model obtained a
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TABLE III: Cross-validated results of the approximate linear
models, represented as mean (standard deviation).

Model R? Support
Training Testing

No selection ~ 0.904 (0.012)  0.835 (0.128) 15.0 (0.0)

IRL1 0.898 (0.014)  0.814 (0.133) 7.7 (1.3)

Greedy 0.897 (0.013)  0.839 (0.123) 7.3 (1.2)

cross-validated R? ~ 0.9 on the training set, showing a good
fit of the regression. The capability of the linear model of
generalizing to new unseen data is supported by an R? = 0.835
on the testing set. This observation holds also for the sparse
approaches. The sparser solutions with a support of only 7
features (on average) were able to obtain comparable R? values
in the testing and training set with respect to the full linear
model. IRL1 incurs slightly lower prediction accuracy than the
full model, while Greedy exhibits the best performance among
the three. This result demonstrates that the shrinkage operation
actually improved the ability of the model to generalize, and
that the Greedy strategy selected better features than IRLI.

The proposed approximations reduced execution time con-
siderably, by several orders of magnitude. On average, the
exact computation of the MHD required 35 minutes, whereas
all surrogate metrics were computed collectively in ~ 0.05
seconds.

Finally, Fig. 3 demonstrates the relationship between sup-
port size and R? and the behavior of the selection algorithms,
as obtained with cross validation and by varying the error
€. (Overall, the larger the e allowed the more sparse the
solution and the less features are used.) As previously, the
Greedy strategy outperforms the ¢; optimization in the choice
of the predictors to include in the model, providing comparable
or better prediction accuracy across the range of support
(or equivalently the allowed error €). The Greedy algorithm
exhibits the global maximum with 7 predictors; i.e., discarding
a subset of predictors improved the capacity of the model to
generalize to new unseen data samples.

As was discussed in the introduction, remote sensing
applications would benefit from the principle introduced in
this paper. Recently, affordable remote sensors have been
proposed for the collection and transmission of digital images
of plants for phenotyping experiments [11], [12], to increase
the availability of automated solutions for phenotype analysis.
The sensors collect and compress the images in an application-
aware fashion being aware of processing that will occur in a
centralized (remote) location. Thus, the sensor must decide the
compression parameters with regards to segmentation accu-
racy, where the uncompressed image is considered the ground
truth. (The sensor has the capability to obtain a roughly good
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Fig. 3: Cross-validated prediction accuracy of the linear mod-
els, when varying the degree of sparsity enforced by the
selection strategies.

segmentation using a low-complexity algorithm and feedback
from a centralized unit [12].) Identifying a segmentation met-
ric that could be included efficiently within a rate-distortion
optimization framework is critical for optimal performance.

The linear approximation of the MHD proposed here would
be an ideal candidate for such a scenario, since a linear
combination of 7 simple to compute metrics can adequately
approximate the MHD (R? =~ 0.9 in most cases). The op-
timization of the linear coefficients and which metrics to be
used can be done at the centralized unit and communicated
via feedback to the sensor. Thus, the sensor can adapt to the
scene at hand and always use an efficient approximation of the
MHD.

V. CONCLUSIONS

In this paper we model the behavior of a complex accuracy
metric for image segmentation (e.g., the Modified Hausdorff
Distance), using easier to compute metrics. We consider sev-
eral of such metrics and use sparse representation approaches
for feature selection to build linear regression models that
could approximate the complex one. This paper presents for the
first time the concept of using a collection of low-complexity
metrics to approximate the behavior of a complex one. We
apply and test the models on a dataset of plant image seg-
mentations from phenotyping experiments. Our experimental
results show that it is possible to closely estimate the MHD
(R? =~ 0.9 in most cases) without necessarily calculating its
exact value (a process involving a costly geometric search),
using a linear combination of 7 simple to compute metrics.
While we used here the MHD, the data-driven framework and
concept presented in this paper can be deployed with other
complex metrics as well, or even not in segmentation scenarios
(e.g., in object matching) with appropriately identified features.
This result is expected to pave the way towards the deployment
of affordable sensors in distributed sensing applications, where
the use of easier to compute segmentation metrics would
enable the sensor to make informed decisions on the encoding
and transmission of the acquired images.
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