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Abstract—Increasingly many vision applications necessitate
the transmission of acquired images and video to a remote
location for automated processing. When the image data are
consumed by analysis algorithms and possibly never seen by
a human, tailoring compression to the application is beneficial
from a bit rate perspective. We inject prior knowledge of the
application in the encoder to make rate-distortion decisions based
on an estimate of the accuracy that will be achieved when
analyzing reconstructed image data. Focusing on classification
(e.g., used for image segmentation), we propose a new application-
aware distortion metric based on a geometric interpretation
of classification error. We devise an implementation for the
High Efficiency Video Coding standard, and derive optimal
model parameters for the λ-domain rate control algorithm by
curve fitting procedures. We evaluate our approach on time-
lapse sequences from plant phenotyping experiments and cell
fluorescence microscopy encoded in intra-only mode, observing
a reduction in segmentation error across bit rates.

I. INTRODUCTION

In present days, more often than not image data are analyzed
by computer vision algorithms and their transmission over
channels necessitates their compression to reduce bandwidth
costs. Progress in vision and automation technology is leading
to increasingly many applications in which images are acquired,
transmitted, and analyzed, largely without any human inter-
vention (e.g., traffic video surveillance, industrial inspection,
remote sensing, precision agriculture, robot navigation). It was
shown recently that considering the application and designing
data codecs appropriately not to optimize fidelity criteria (e.g.,
mean squared error) or psycho-visual criteria (e.g., structural
similarity), but considering how would an analysis algorithm
perform on compressed data, is beneficial from a bit rate
perspective [1]. For example, several vision tasks (e.g., object
detection, segmentation, image retrieval) can be formulated
as classification problems, and early studies on the effects of
lossy compression on classification can be found in [2].

In this paper, we propose to guide encoding decisions
(and corresponding bit allocation) explicitly within a rate-
distortion (R-D) framework, to maximize post-compression
classification accuracy. We devise a distortion metric which
aims to focus bit budget on points that affect most classification
accuracy (Figure 1). Our work is the first to demonstrate this
concept within a standard compliant context, in the recent High
Efficiency Video Coding (HEVC) standard [3].

Image and video coding schemes typically split the input
signal into coding units (CUs), corresponding e.g. to non-
overlapping image blocks or sub-bands. While in early compres-
sion standards all CUs were encoded using the same settings,
recent approaches offer the possibility to select different coding
options for each CU (e.g., quantizer, CU size, prediction mode),
that will result in different rate requirements and levels of
distortion. In an operational R-D optimization framework, the
resource allocation problem at the encoder is addressed by
minimizing a distortion metric D between original X and
reconstructed X̂ image while satisfying a bit rate constraint:

minimize
Θ

D(X, X̂; Θ) subject to R(X; Θ) ≤ Rtot, (1)

where R(X; Θ) is the output rate obtained using parameters Θ,
and Rtot is available bit budget. In a Lagrangian formulation,
optimal parameters Θ∗ that minimize the so-called R-D cost
are found solving the unconstrained problem:

Θ∗ = arg min
Θ

D(X, X̂; Θ) + λR(X; Θ), (2)

where λ ≥ 0 sets the trade-off between rate and distortion. To
reduce perceived visual distortion while maintaining computa-
tional efficiency, distortion metrics akin to the mean squared
error are routinely adopted by general purpose video encoders.
To focus bits in critical for the classifier regions, here we
inject prior knowledge in the R-D optimization process via a
new distortion metric based on a geometric interpretation of
compression error in relation to decision boundary (Figure 1).

A distortion metric based on the Kullback-Leibler divergence
is used in [4] to optimize scalar quantization of synthetic signals
for classification at the decoder. The joint design of vector
quantization and classification has been widely investigated,
e.g., combining squared error and a penalty for misclassification
based on a Bayes risk term [5], 2-D hidden Markov model of
image blocks [6], or Hamming distortion [7]. Chao et al. [8]
modify rate control of H.264 to preserve SIFT features. Pu
et al. [9] define a distortion metric based on conditional class
entropy to tailor JPEG 2000 to a target detection task. However,
such investigations either are aimed at quantizer design and
the approaches do not comply to any compression standard, or
focus on optimizing (the compression of) related features for
detection and tracking tasks with potential larger computational



requirements or modifications on the encoder side. On the other
hand, our application-aware R-D optimization approach focuses
on general classification (which can be used also as part of
detection/tracking) and is compliant with the HEVC standard,
adding limited computational overhead on the encoding side.

In Section II we define our proposed distortion metric, and
in Section III we discuss its implementation in the λ-domain
rate control algorithm [10] of HEVC. We focus on intra-
only encoding mode, which ensures efficient access to any
frame of a sequence. We validate our approach on a time-lapse
sequence arising from plant phenotyping experiments (the task
is to delineate plant objects from background). We adopt this
application because due to design requirements lightweight
sensors and significant compression levels are necessary [11].
We also test our approach on a sequence from fluorescence
microscopy where the goal is to segment moving cells [12]. In
Section IV, we observe a reduction in segmentation error across
bit rates, when compared to the baseline approach based on
fidelity criteria. Finally, Section V offers concluding remarks.

II. CLASSIFICATION-AWARE DISTORTION METRIC

Prior to defining our proposed distortion metric for classifi-
cation tasks, we discuss the relation between compression
and classification. For simplicity we will focus on binary
classification (e.g., object segmentation) and linearly separable
data, although generalizations to nonlinear and multi-class
problems are possible.

Let δH : X → {0, 1} be the discriminant function of a linear
classifier, where H = {x ∈ X |wTx+w0 = 0} is the decision
boundary defined in the pixel domain X . In a distributed
sensing and analysis framework, the classifier δH represents a
surrogate of the application at the receiver, which may involve
more sophisticated vision algorithms and would be difficult
to use directly at the encoder (it would be computationally
inefficient and also less general, since each application will
require a customized solution). Thus, the w, w0 parameters
are the prior knowledge of the application available at the
encoder, which can be e.g. fixed prior to sensor deployment, or
estimated at receiver and communicated (few bytes) to sensor.

Figure 1 shows a graphical representation of a pixel intensity
(or in general feature) space X , and several reconstructions
of an original point x resulting from different coding options
(which in turn may be associated with different rates). We aim
to show that Euclidean choices to distortion optimization (e.g.,
mean squared error) can lead to undesired classification error.
In this example, x̂2 and x̂3 are better (in a Euclidean sense)
approximations of x than x̂1, since ‖ε2‖ < ‖ε3‖ < ‖ε1‖.
However, x̂2 is closer to the decision boundary, thus ambiguity
of its classification at the receiver may increase, and x̂3 is on
the other side of the boundary (i.e. δH(x̂3) 6= δH(x)), which
will likely lead to a classification error on the decompressed
image. We aim to define a metric to choose x̂1, because x̂1

moves farther from H than x, and in an application-aware
context it is preferable to x̂2 and x̂3. The example of Figure 1
motivates the following remarks.

Fig. 1. Graphical example illustrating the proposed distortion metric dδ of
Eq. (3) in a 2-D feature space. Shown are: decision hyperplane H of a binary
classifier; original pixel value x; example reconstructions x̂1, x̂2, x̂3 (and
corresponding error vectors ε1, ε2, ε3) after lossy compression of x with
different parameters (each associated with different rate requirements). For
post-compression classification, x̂1 is preferable although its Euclidean error
‖ε1‖ is greater than that of x̂2 and x̂3.

Observation 1: Distortion estimation should be inversely
proportional to the distance ∆(x, H) = (wTx + w0)/‖w‖
between an original data point x and the decision hyperplane
H , where ∆(x, H) > 0 if x lies on the same side of the plane
H as the normal vector w and negative otherwise.

Observation 2: Distortion should be proportional to the com-
ponent of the error vector (oriented from x to x̂) in the direction
normal to the decision hyperplane ε‖w =

(
(x̂− x)Tw

)
/‖w‖.

Based on these observations, we define our proposed
classification-aware distortion metric dδ as:

dδ(x, x̂;H) = − sgn(wTx + w0) · ‖w‖
wTx + w0

· (x̂− x)Tw

‖w‖

= − (x̂− x)Tw

wTx + w0
,

(3)
where wTx + w0 6= 0. The first term adjusts for the sign,
such that: dδ < 0 if x̂ is farther than x with respect to H;
0 < dδ < 1 if x̂ lies between x and H; and dδ > 1 if x̂ crosses
the decision boundary (see Figure 1). If the original point x
lies exactly on the boundary H , the denominator of Eq. (3) is
zero: prior knowledge available at the encoder is not sufficient
to make an informed decision, and any displacement of x may
result in a misclassification at the receiver, thus distortion is
‘infinite’ (in the implementation, to avoid singularity a small
quantity is added to the denominator).

To satisfy the conditions of the generalized Lagrange
multiplier method, distortion values must be nonnegative. Thus,
dδ in Eq. (3) is composed with an exponential function:

Dδ(x, x̂;H) = exp(dδ(x, x̂;H)). (4)

If x̂ is farther than x with respect to H , then 0 < Dδ < 1;
while Dδ > 1 for x̂ closer to H than x and it grows rapidly
after the decision boundary is crossed. Distortion at the CU
level is obtained as the sum DCU

δ =
∑N
i=1Dδ(xi, x̂i;H), over

pointwise distortion values at pixels x1, . . . ,xN in a CU.
We implement the proposed distortion metric Dδ in the R-D

optimization framework of the HEVC compression standard [3].



In the next section, we first outline relevant aspects of the λ-
domain rate control algorithm [10] currently adopted in HEVC.
Next, we discuss how we obtain suitable model parameters
based on curve fitting procedures and training data.

III. RATE-DISTORTION MODELING IN HEVC

In the HEVC standard [3], R-D optimization is employed
at the encoder to decide coding parameters, and distortion
is measured by the sum of squared errors (SSE) between
original and reconstructed pixel values. Accurate rate control
is achieved by jointly using several models, however, default
model parameters are tailored to SSE as distortion metric,
whereas here we adopt Dδ (Eq. (4)). Below we describe relevant
models, and how we tailor them to our metric Dδ .

The JCT-VC has recently adopted the λ-domain rate control
algorithm [10], which identifies the Lagrange multiplier λ (see
Eq. (2)) as key to accurate bit allocation. The relationship
between R and D is modeled by the hyperbolic function
D(R) = CR−K , where C and K are model parameters.
R-λ and λ-QP models. By differentiating D(R), the R-λ

relationship λ = αRβ is obtained, where α and β are model
parameters. Due to differences in the R-D characteristics of
intra-coded (I-frames) and inter-coded pictures, the R-λ model
for I-frames includes an image complexity measure C based
on the Sum of Absolute Transformed Differences (SATD) [13]:

λ =
α

256

(
Cβ1

R

)β2

, (5)

where α = 6.7542, β1 = 1.2517, and β2 = 1.7860 are default
values. To adapt to source characteristics, α and β2 are updated
with the encoding process as described in [13].

When encoding a picture or a block within a picture (so-
called ‘LCU’, i.e. largest coding unit), target rate is estimated
based on available to that point bit budget and an estimate of
the bits that will be required to encode the remaining data [10].
With the target rate known, λ is calculated at the frame level
and also for each LCU in an I-frame using the R-λ model of
Eq. (5). Subsequently, the majority of coding parameters are
determined by exhaustive search, evaluating for each option
the objective function in Eq. (2) (in this work we use Dδ as
distortion metric). The configuration obtaining minimum R-D
cost is eventually selected.

To reduce encoding complexity, the quantization parameter
(QP) is more efficiently obtained using the λ-QP model instead
of exhaustive search. A linear-log relationship is used [14]:

QP = a log λ+ b , (6)

where a = 4.2005 and b = 13.7122 are default values [14].
Fitting models for Dδ . To tailor R-λ and λ-QP models to

our proposed distortion metric (instead of SSE), we estimate
suitable model parameters based on training data and curve
fitting procedures. We encode training images with different
QP values in a fixed-QP strategy, using our distortion metric
Dδ . Each time we record λ, QP, SATD, and the resulting rate
R. To estimate parameters α and β2 of the R-λ model for I-
frames, we fit Eq. (5) to the observed image statistics using the
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Fig. 2. Image statistics obtained from plant image training data and fitting
curves for the λ-domain models. Dashed lines denote default models in HM.

Levenberg-Marquardt algorithm. Finally, we use least squares
fitting to estimate parameters a and b of the λ-QP model in
Eq. (6). We measure goodness of fit using the r2 coefficient of
determination. The values of λ and QP estimated by the models
of Eq. (5) and (6) are normally restricted to a narrow range
[10]. Since quality consistency among neighboring LCUs may
be unnecessary in an application-aware context, we disable
this clipping operation. We only ensure that 0 ≤ QP ≤ 51.

IV. RESULTS AND DISCUSSION

A. Experimental Settings

Image data: We evaluate our approach on a time-lapse
sequence composed of 21 gray-scale images (1080×432),
showing a top view on 11 growing Arabidopsis thaliana plant
subjects [11] (see Figure 4a). We also adopt a fluorescence
microscopy sequence (N2DH-GOWT1 [12]), composed of 92
frames (1024×1024) showing moving mouse stem cells.

Codec settings: We implement the proposed Dδ metric
of Eq. (4) in the HM v16.3 reference encoder. We enable
rate control and encode the test sequences with the Proposed
approach at a variety of bit rates. For comparison, we also
adopt the plain HM encoder, referred to as HM16.3, with SSE
distortion metric and default λ-domain parameters (Section III).
For decoding we use the HM v16.3 reference decoder.
λ-domain models: We estimate model parameters of the

rate control algorithm as described in Section III. To collect
training data we encode the first image of each sequence using
a fixed-QP approach, with QP ∈ {24, 27, 30, 33, 36}. Fitting
parameters are initialized to default values in HM16.3. For
example, best-fit parameters (r2 ≈ 1, cf. Figure 2) for the plant
image sequence are: α = 5.6344, β2 = 1.8110 for R-λ model
and a = 4.3281, b = 14.4329 for λ-QP model.

Classifier: To segment the images we adopt a pixel-level
classifier based on logistic regression operating on pixel
intensities. Classes are defined as ‘foreground’ (plant or cell)
and ‘background’. Let x ∈ X be a pixel value and y the corre-
sponding (unknown) label. We predict the probability of y being
‘foreground’ as P(y = foreground|x) = 1/(1 + e−w

Tx+w0).
Based on a training (uncompressed) image and corresponding
ground-truth pixel labels, model parameters w, w0 are found
using maximum likelihood estimation. Note that the same
parameters are used at the encoder in the proposed distortion
metric (cf. Eq. (3)). We use for training the first image in the
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Fig. 3. Compression performance with respect to segmentation accuracy
(MHD, lower is better). Rate is measured in bits per pixel (bpp), averaged
over the entire sequence.

sequence, which is excluded from testing. At the decoder,
we decide the class of a pixel based on a threshold ϑ∗

on the probability values, estimated from the training data
by sweeping over a range of values in [0, 1]. We select
ϑ∗ = arg maxϑ(2|Ygt ∩Yc|)/(|Ygt|+ |Yc|) that maximizes
Dice score between ground truth Ygt and classifier output Yc.

Evaluation: We evaluate our approach on post-compression
classification accuracy. To compare segmentation of the image
reconstructed after compression with ground-truth segmenta-
tion, we adopt the Modified Hausdorff Distance (MHD) [15].

B. Results

Figure 3 shows average R-D performance using the dis-
tortion metric Dδ of Eq. (4). It is readily seen that with the
Proposed approach segmentation error (measured by MHD) is
consistently lower than HM16.3 at all bit rates and for both
test sequences, demonstrating that by using our classification-
aware distortion metric the encoder focuses bit rate in a way to
preserve classification accuracy. A reduction in image fidelity of
approximately 1 dB of Peak Signal-to-Noise Ratio is observed
with Proposed, which is explained by the effect discussed in
Section II (classification accuracy is preferred over fidelity).
With the Proposed approach, encoding time increases with
respect to HM16.3 on average by 17% and 10% for plant and
cell sequences, respectively.

To appreciate the benefits of our approach, Figure 4 shows
the outcome of post-compression classification on an example
plant image. For equivalent bit rate (1 bpp), reconstructed
images in (c) and (d) appear visually almost identical. On
the other hand, segmentation in (f) obtained on the image
compressed with the Proposed approach is less noisy than the
one in (e) obtained on the image compressed with HM16.3
(e.g., see leaf borders and holes inside some leaves).

V. CONCLUSION

We presented an approach to application-aware R-D opti-
mization for image and video compression based on a new
distortion metric evaluating classification errors due to lossy
compression. While our metric is general and could be adapted
to different coding schemes (and types of signal), we devise an
implementation for the HEVC standard. Our approach involves
only encoder-side optimizations and does not include free

(a) Original image (b) Ground truth

(c) HM16.3 (d) Proposed (e) HM16.3 (f) Proposed

Fig. 4. Example of post-compression classification. Shown are: (a) original
image; (b) ground-truth segmentation obtained manually; detail (green box)
of reconstructed image after compression at 1 bpp using (c) HM16.3, and (d)
proposed approach; (e) classifier output of (c); (f) classifier output of (d).

parameters tunable by the user. The resulting bit stream is
standard compliant. A reduction in object segmentation (via
classification) error is consistently observed when analyzing
image data compressed using our methodology. We expect
that our approach will have numerous practical implications in
multimedia communications involving automated analyses.
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