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Abstract. Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-
BOLD) MRI is a new contrast agent- and stress-free imaging technique
for the assessment of myocardial ischemia at rest. The precise registration
among the cardiac phases in this cine type acquisition is essential for au-
tomating the analysis of images of this technique, since it can potentially
lead to better specificity of ischemia detection. However, inconsistency
in myocardial intensity patterns and the changes in myocardial shape
due to the heart’s motion lead to low registration performance for state-
of-the-art methods. This low accuracy can be explained by the lack of
distinguishable features in CP-BOLD and inappropriate metric defini-
tions in current intensity-based registration frameworks. In this paper,
the sparse representations, which are defined by a discriminative dictio-
nary learning approach for source and target images, are used to improve
myocardial registration. This method combines appearance with Gabor
and HOG features in a dictionary learning framework to sparsely repre-
sent features in a low dimensional space. The sum of squared differences
of these distinctive sparse representations are used to define a similarity
term in the registration framework. The proposed descriptor is validated
on a challenging dataset of CP-BOLD MR and standard CINE MR ac-
quired in baseline and ischemic condition across 10 canines.

Keywords: Registration, Dictionary Learning, Similarity Metric, CP-BOLD
MR, CINE MR.

1 Introduction

Nonrigid image registration is an essential step in medical imaging, including
automatic segmentation, motion tracking and morphometric analysis [13]. How-
ever, since most of the proposed algorithms rely on a (dis)similarity metric build
based on the assumptions of consistent intensity and local shape, images with
pathologies and locally varying intensity may not be accurately aligned. One
example of that is the registration of image sequences of Cardiac Phase-resolved
Blood Oxygen-Level-Dependent (CP-BOLD) MR. CP-BOLD MR is a truly non-
invasive method for early diagnosis of an ongoing ischemia, observing changes
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Fig. 1: Exemplary plots of time series extracted from the same corresponding regions in
the same subject under baseline (absence of disease) conditions using CP-BOLD MR
and standard Cine. Observe how in CP-BOLD, intensity varies with cardiac phase, but
in standard CINE MR this variation is minimal.

in myocardial signal intensity patterns as a function of cardiac phase [17]. As
Figure 1 illustrates, time series of intensity vary as a function of cardiac phase
when BOLD effect is present —it appears maximal in systole and minimal in di-
astole. In disease this effect is not present. However, visualizing and quantifying
such patterns requires significant post-processing, including myocardial regis-
tration to establish pixel-precise time series for identifying such patterns [12].
Such spatio-temporal intensity variations of the myocardial BOLD effect cause
the methods developed for standard CINE MR registration to under-perform.
Thus, in CP-BOLD in addition to violations of shape invariance (as with stan-
dard CINE MR) the principal assumption of appearance invariance (consistent
intensity) is violated as well.

As a result, no CP-BOLD MR myocardial registration algorithms exist and
due to this absence either segmental information [11] or synthetic data sets are
used [12], to obtain pixel-wise time series. We assume that it is due to lack of
proper similarity criteria. Rather than relying on low-level features used often for
myocardial registration of standard CINE MR, a more distinguishing descriptor
should be developed to accommodate the BOLD effect.

In this paper, we propose a feature-based descriptor as a similarity mea-
sure of the alignment to register the myocardium in the entire cardiac sequence
of CP-BOLD. We adopt a patch-based discriminative dictionary learning tech-
nique [4] to learn features from data. Our motivation is to employ a compact and
high-fidelity low-dimensional subspace representation, which is able to extract
semantic information of the myocardium pixels [5]. We observe that although
the patch intensity level varies significantly across the cardiac cycle, sparse rep-
resentations based on learnt dictionaries are invariant, as well as unique and
robust. The discriminative dictionary learning strategy is designed to facilitate
this key observation regarding CP-BOLD.

During training, two dictionaries of patches for myocardium and background
are learnt offline. To register two images with unknown myocardium masks,
the sparse representations that are obtained on the basis of previously trained
dictionaries for background and myocardium, are concatenated and considered



as the feature for that particular pixel. The similarity term evaluates the match
of the sparse features at every iteration on a pixel level. The sum of squared
differences of the sparse representations between the target image and warped
source image are utilized as similarity criteria.

There are three major contributions of the paper. First of all, we propose
a sparse representation-based image descriptor in a registration framework, for
the first time to the best of our knowledge. Second, we experimentally validate
the fact that BOLD contrast significantly affects the accuracy of registration al-
gorithms (including intensity-based and feature-based methods), which instead
perform well in standard CINE MR. Finally, we address the fundamental prob-
lem in handling BOLD contrast by designing a set of compact features using dis-
criminative dictionary learning, which can effectively represent the myocardium
in CP-BOLD MR.

The remainder of the paper is organized as follows: Section 2 discusses the
background and Section 3 presents the method. Based on our experimental re-
sults (Section 4), we draw conclusions in Section 5.

2 Background

Automated myocardial registration for standard CINE MR is a well studied
problem [15]. Most of these algorithms can be classified into two groups according
to similarity criteria used: intensity-based or feature-based. General intensity-
based registration algorithms can be summarized as an energy minimization
procedure, where the energy functional is [13]:

E =Y DS(I(p), I(p + u)) + \Er, (1)
peN

where (2 represents the entire image domain, and p denotes a pixel in the do-
main. Non-rigid registration consists of minimizing a dissimilarity measure DS
between a source image I, and a target image Iy, u denotes the displacements
and Fg denotes the regularization term. In this work, we are particularly in-
terested in the definition of the similarity measure. Sum of squared differences
(SSD) and cross correlation (CC), are the earlier metrics utilized in registration.
Recently, information theory-based approaches gained attention, e.g., derivatives
of Mutual Information (MI), which is based on individual and joint gray level
distributions [8].

When registration under inhomogeneity conditions is required, some have
proposed modifications on regional intensity distortions (for brain MRI) [14] or
spatially intensity variations [19]. Alternatively, feature-based approaches can be
used. A recent example is DRAMMS [6], where the similarity is based on optimal
Gabor attributes. Another approach, MIND [3], relies on regional information
following the footsteps of self-similarity (a method utilized for image denoising)
for multi-modality registration.

In this paper, we concentrate on developing a feature-based metric but also
learning features instead of using fixed ones. We use sparse representation coefli-
cients of patches, generated by a dictionary trained offline, to define a similarity
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Fig. 2: Similarity of patches in two consecutive images. First image shows the test patch
(green circle) and the remainder shows responses of each similarity metric inside the
myocardium. All metrics are normalized and dissimilarity metrics are inverted.

measure of alignment. In this study, we compare our method with SSD and
MI based Free Form Deformations (FFD) [10], optical flow based diffeomorphic
demons (ddemons) [18] and symmetric diffeomorphic transformation with CC
metric implemented in Advanced Normalization Toolkit (ANTSs) [2]. To demon-
strate that our proposed approach provides better localized matches, Figure 2
shows the values of matches using several criteria when taking a patch from one
image and matching it to myocardial locations in another image.

3 Method

We leverage dictionary learning techniques to learn better representative fea-
tures. Accordingly, we integrate a Dictionary Learning-based Image Descriptor
(DLID) derived from training patches into a similarity term of our proposed reg-
istration framework. Features learnt via dictionary learning are used in an image
registration framework to evaluate the performance of the proposed descriptor.

3.1 Using learnt Features in a Registration Framework

When registering a cardiac sequence Iy, ...,1I;, we aim to find a deformation
that can register each image in the sequence to the first one. Here following the
formulation of equation 1, we adopt a regularization in the form of

argmin » _ S(I1(p), Li(p + u)? + X tr(Vu(p) " Vu(p))?, (2)
Y pen

where Vu denotes the gradient of the displacement field. This function is mini-
mized over u with Gauss-Newton optimization as described in [3].

We propose an appropriate similarity term S based on the sparse feature
representation of image patches. Assuming two input images, considering I; as
fixed and I; as moving, we extract for each pixel location in both, patches,
which we represent with appearance and texture features (HoG, Gabor). We
create a sparse representation Xp for each pixel location for the two images to
be registered. The Orthogonal Matching Pursuit (OMP) algorithm [16] is used
to compute, two sparse feature matrices XB and XM , both with n dimensions,
based on previously computed dictionaries DP and D™ (detailed below). At



Algorithm 1 Dictionary Learning

Input: Training patches for background and myocardium: Y and Y™
Output: Dictionaries for background and myocardium: DZ and D™
1: for C={B,M} do
2: Find intra-class Gram matrix G¢ and discard atoms with high values
3: Learn dictionary and sparse feature matrix with the K-SVD algorithm

minimize|Y¢ — DY X3, subject to ||z ]jo < s
DC,XC

4: end for

5: Compute inter-class Gram matrix GBM

6: Discard from DP and DM atoms with high values in GBM

a certain pixel p of the image, a concatenation of these sparse representation
vectors Xp = [X' B ;X M] are used to represent the image instead of the pixel
level definitions. The proposed similarity term S at pixel p is defined as the ¢!
norm of the difference vector between the sparse representations of the warped
source image and the target image as shown in equation 3.

SU1(p), Le(p +w) =l X — Xjpu I 3)

3.2 Feature generation with Discriminative Dictionary Learning

Given some training images (e.g., sequences in the context of cine (BOLD) MRI)
and corresponding ground truth labels (i.e., myocardial masks), we obtain two
sets of matrices, Y2 and Y™, where the matrix Y? contains background in-
formation, and Y™ contains information of patches within the myocardium.
Information is collected from image patches: K x K squared patches are sam-
pled around each pixel in the training images. More precisely, the i-th column of
the matrix Y (and similarly for the matrix Y'*) is obtained by concatenating
the normalized patch vector of pixel intensities, taken around the i-th pixel in
the background (or myocardium), along with Gabor and HOG features of the
same patch. The dictionary learning method takes as input these two sets of
training matrices, to learn, two dictionaries, D® and DM, with n number of
atoms, and two sparse feature matrices, X and XM, with sparsity s. The i-th
column of the matrix X2, 28, is considered as the discriminative feature vector
for the particular pixel corresponding to the i-th column in YjB .

Dictionaries and sparse features are trained via the well-known K-SVD algo-
rithm [1], in an optimization problem shown in Algorithm 1. During initialization
we first find the “intra-class Gram matrix” to promote diversity. The idea is to
have a subset of patches as much diverse as possible to train dictionaries and
sparse features. For a given class considered (let us say background) we can
define the intra-class Gram matrix as GZ = (YZ)TY 5. To ensure a proper dis-
criminative initialization, patches that correspond to high values in the Gram



matrix are discarded from the training before performing K-SVD, and K-SVD
is initialized obtaining a random set of patches as initial atoms.

We also use pruning, inspired as a greedy approach of [9], which is performed
after K-SVD to remove undesired (similar to other) atoms from each dictionary
trained. In this case, an “inter-class Gram matrix” between dictionaries is com-
puted (GBM = (DB)TDM), the atoms of each dictionary are sorted according
to their cumulative coefficients in GBM | and a chosen percentage of them is dis-
carded to ensure mutual exclusiveness (and better discrimination) between the
different dictionaries. These modifications ensure that patches of different origin
will have different support and that similar atoms are excluded.

4 Results

This section describes qualitatively and compares quantitatively our proposed
dictionary learning-based descriptor with state-of-the-art approaches.

Data Preparation and Parameter Settings: 2D short-axis images of
the whole cardiac cycle (2D+time, cine) were acquired at baseline and severe
ischemia (inflicted as stenosis of the left-anterior descending coronary artery
(LAD)) on a 1.5T Espree (Siemens Healthcare) in the same 10 canines along the
mid ventricle using both standard CINE and a flow and motion compensated
CP-BOLD acquisition within few minutes of each other [17]. All quantitative
experiments are performed in a strict leave-one-subject-out cross-validation. Pa-
rameters and settings were optimized for each method used in comparison. For
DLID, in this paper we have empirically chosen a dictionary of n = 1000 atoms
for foreground and background respectively, a sparsity of s = 4, and as patch size
K=9. The regularization weight () is set to 0.8 to ensure smooth deformations.

Visual Evaluation: In an example sequence, we register each image in the
sequence throughout the cardiac cycle to the first image using our approach.
We take two orthogonal short axis profiles that intersect approximately at the
center of the Left Ventricle, and in Figure 3 we show the temporal evolution of the
profiles with and without registration (left-most and right-most horizontal and
vertical profile, respectively). The proposed shows clearly defined structure and
the ability to correct for cardiac motion. Notice that BOLD intensity variation
is subtle and not perceptible in these images (ie., is not a global change).

Quantitative Comparison: Using again the same process, in a strict-leave-
one-out fashion we want to investigate the effect of different similarity metrics
in recovering cardiac motion. To evaluate performance, we use again manual
delineations of the myocardium provided by experts, and train dictionaries on
a set of images and test on one subject. For validation, via segmentation, the
myocardial mask from the source image was propagated to the target using the
deformation field found with the algorithms, and its overlap with the ground
truth mask of the fixed is measured using the Dice overlap metric [7]. Note that
these masks are unknown to the algorithms and are used only for comparison.

Our findings in Table 1, show that using discriminative features and our
similarity term significantly improve the performance for CP-BOLD cardiac se-
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Fig. 3: Temporal evolution of two orthogonal short axis profiles (red and green line)
intersecting approximately at the center of the left ventricle, Wlthout registration (orig-
inal) and with registering every image in the sequence with the first image (proposed).

Table 1: Dice overlap comparison for different similarity metrics

Baseline Ischemia
Methods Standard Cine CP-BOLD Standard Cine CP-BOLD
ANTs (CC metric) [2] 0.60F0.11 0.55F0.10 0.55F0.15 0.51F0.12
dDemons [18] 0.59F0.11 0.51F0.16 0.58F0.13 0.45F0.13
DRAMMS (6] 0.67F0.09 0.61F0.07 0.59F0.10 0.54F0.06
FFD-SSD [10] 0.49F0.07 0.45F0.16 0.48F0.14 0.39F0.13
FFD-MI [10] 0.54F0.12 0.48F0.08 0.53F0.06 0.38=F0.07
MIND (3] 0.62F0.07 0.62F0.12 0.61F0.15 0.53F0.09
Proposed without sparsity 0.55F0.08 0.52F0.11 0.45F0.09 0.42F0.12
Proposed 0.63F0.07 0.66 F0.09 0.58F0.07 0.60=F0.13

quence registration either under baseline or ischemia conditions w.r.t. other ap-
proaches. To highlight the unique challenge of BOLD, we also include results
based on standard CINE. Our proposed method, although not its main focus,
performs as good as other algorithms even in this case. To emphasize the impor-
tance of sparsity and learning we also use directly the ¢2 norm between input
patches, instead of spare representations. Lower performance in ischemia for all
algorithms could be attributed to changes in myocardial contractility.

5 Discussions and Conclusion

We propose a new dictionary learning-based image descriptor (DLID) for my-
ocardial registration. The experiments clearly underline the need for a new repre-
sentation in image registration. Their integration into analytical tools are neces-
sary to meet new challenges posed by myocardial CP-BOLD MR. In particular,
this study pin-pointed the challenges the BOLD effect poses on common as-
sumptions made when registering the myocardium and quantitatively analyzed
the performance of the descriptor both under baseline and ischemia conditions.
Moreover, in this study we showed that by learning appropriate features to best
represent texture and appearance in CP-BOLD, it is possible to obtain better
correspondences for the entire cardiac sequence. The proposed method can be



utilized for other challenges, where spatio-temporal intensity as a biomarker of
disease, especially in the presence of motion. One limitation is computational
time, since calculating sparse representations is the bottleneck of the problem.
The successful application of this post-processing tools are foreseen to be critical
in the clinical translation of cardiac CP-BOLD MR.
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