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Abstract. Cardiac Phase-resolved Blood-Oxygen-Level-Dependent
(CP–BOLD) MRI examines changes in myocardial oxygenation in re-
sponse to ischemia without contrast and stress agents. Since signal inten-
sity changes are subtle, quantitative approaches are necessary to
examine variations in myocardial BOLD signals and identify ischemic
myocardial territories. Here, using data from animal studies, we extract
myocardial time series (BOLD signal as a function of cardiac phase)
and explore such variations using a structured dictionary-learning frame-
work, considering shift-invariant learning and spatial priors. We use it:
to learn a model of baseline (absence of disease) myocardial time se-
ries; and in datasets where disease is assumed, to obtain a spatial map
of ischemia presence, identifying myocardial time series from ischemic
territories in an unsupervised fashion, by exploiting structural proper-
ties, or the lack thereof, in the data. By providing new visualization and
quantification approaches, we hope to accelerate the clinical translation
of cardiac BOLD MRI for noninvasive ischemia assessment.

1 Introduction

Cardiac phase-resolved Blood-Oxygen-Level-Dependent (CP–BOLD) MRI cap-
tures simultaneously BOLD changes (≈10–20%) and wall motion in a single
cine acquisition (2D+time) [1] and can assess myocardial ischemia at rest with-
out contrast and stress agents [2], avoiding the contraindication and risks of
the latter [3]. Myocardial signal intensities obtained with CP–BOLD vary in a
spatio-temporal manner as shown in Fig. 1: when viewed as a 1D time series,
BOLD signal intensity remote from the ischemic territory varies across the car-
diac cycle in a structural fashion appearing maximal in systole and minimal in
diastole, while within the ischemic territory such structure is not present.

These subtle temporal variations make visual assessment challenging (Fig. 1).
To aid diagnosis, in [2] ischemic segments (following the classical AHA segmental
analysis) were identified if the ratio of average segmental intensity obtained from
the images at end-systole (ES) and diastole (identified based on ventricular blood
volume) was less than one. However, as [4] suggests, time series obtained from
different but healthy territories can appear shifted (in time), thus maximal signal
intensity may not always occur in ES, which will affect the performance of [2].
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Fig. 1. An image of CP–BOLD MRI at rest in a subject with LAD stenosis (left),
and extracted 1D time series from several remote territories (middle) and within the
ischemic (LAD) territory (right) as a function of cardiac phase.

In this paper, we propose a new direction in algorithmic design that is able
to discern spatio-temporal variations in myocardial time series with robustness
to the presence of shifts. It uses all available information in the cine stack (and
not only two images as with [2]). By enforcing sparsity, is also robust to noise
in the time series attributed to scanning artifacts, physiological variability or
inaccuracies in myocardial segmentation and registration.

We rely on structured multi-component dictionary learning framework to
model myocardial time series, extracted after segmenting the myocardium and
establishing correspondence (via registration) across the cardiac cycle. We de-
compose each time series as a linear combination of few learned atoms, and
group together time series that use the same atoms. To ‘guide’ the grouping of
spatially-neighboring time series we enforce sparsity, spatial priors and explic-
itly account for the shift structure, by learning atoms using shift-invariant [5]
and general [6] dictionaries. Based on the grouping we estimate a probability of
belonging to each group. In canine experiments when disease is absent, we find
a strong BOLD characteristic behaviour in signal intensities, which varies with
cardiac phase and shifts temporally. When ischemia is present, we exploit this
behaviour within our dictionary framework to separate myocardial time series by
how close they come to this behaviour, and provide a spatial map of ischemia in
the myocardium. To aid separation, we also incorporate a discriminatory term,
obtaining supervision automatically by looking for said behaviour. The proposed
framework jointly optimizes for the unknowns and obtains a final spatial map.

2 Multi-Component Dictionary Learning: MC–DL

2.1 MC–DL for Learning Baseline CP–BOLD Time Series

We consider as input K baseline 2D(+time) CP-BOLD MRI datasets (with no
disease present) obtained with a BOLD cine sequence [1]. We want to learn a
linear model that describes patterns and statistics in these datasets.

Pre-processing. For each subject k, we trace endo- and epi- cardial boundaries
in one image (in systole) and divide the myocardium into j = 1, ..., J non-
overlapping consecutive radial segments. We propagate and track these segments
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automatically to all images of the cardiac cycle [7]. Thus, for each dataset we
obtain J 1D time series reflecting the average BOLD signal intensity of each
segment as a function of cardiac phase. We spline interpolate all time series to
length n across the study population. To remove any variability due to differences
in ES, we estimate for each subject ES as the minimum of ventricular blood
volume (from the myocardial delineations) and shift their time series to align
them. Finally, we obtain an input matrix Y ∈ R

n×K·J containing the columnwise
concatenation of all time series in the study population, arranging in the same
order of extraction first the time series of the first subject, and so on.

Dictionary learning. We factorize Y ≈ DX following the formulation called
Multi-Component Dictionary Learning (MC-DL):

minimize
C,G,X(c),X(g)

∥
∥
∥Y − [

C G
]
[

X(c)

X(g)

]∥
∥
∥

2

F
+ αΩ(X) + βΦ(X,D)

subject to ‖x(c)
i ‖0 = 1, 1 ≤ i ≤ K · J, ‖dj‖2 = 1, 1 ≤ j ≤ p+ g,

(1)

where D = [C G] ∈ R
n×m is called dictionary (and its normalized columns

are called atoms) and X = [X(c); X(g)] ∈ R
m×K·J is the sparse representation

matrix with regularization parameters α, β > 0. Operator Ω imposes sparsity on
the columns of X, while Φ adds spatial constraints either on the reconstruction
DX or on the presentation pattern from X.

To accommodate for (shift-invariant) structure in the input time series we
construct a dictionary with specific properties. We split the dictionary into a cir-
culant component (C ∈ R

n×p) and a general component (G ∈ R
n×g) resulting

in the overall dictionary D = [C G]. The split is equivalent in the representa-
tions X ∈ R

(p+g)×K·J ,X = [X(c); X(g)]. We model input data assuming that
it is dominated by a characteristic pattern that shifts across time. Following this
expectation, we model each time series as a linear combination between the pat-
tern (or one of its immediate shifts) and a group of general components that can
account for other variability (physiological or not). To solve (1) we iterate a dou-
ble alternative optimization procedure: we solve for variables grouped in pairs of
one dictionary component and its representations ((C,X(c)) and (G,X(g))) and
then for each pair we use again an alternative optimization technique popular in
dictionary learning with appropriate dictionary updates (circulant or general).
The normalization constraint applies to all dictionary atoms.

Sparsity constraints Ω(•). To enforce sparsity we consider two sparse approx-
imation approaches: matching pursuit and �1 minimization. We enforce the hard
constraint of sparsity 1 for each column of X(c) by considering the highest cor-
relation between each time series with one of the circulant kernel and for the
sparsity of X(g) we use either matching pursuit (OMP [8], S–OMP [9]) or the

convex penalty Ω(X) =
∑K·J

i=1 ‖x(g)
i ‖1 based on the �1 norm [10].

Dictionary updates for G and C. The general component G is updated using
the K–SVD [6] procedure. In the case of C we use a new circulant dictionary
learning algorithm (C–DLA) [5]. We remind the reader that circulant matrices
are matrices where all columns are circularly shifted versions of the first column
c ∈ R

n, called kernel. In its original form, C–DLA constructs a full circulant
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dictionary C ∈ R
n×n that reduces the target objective ‖Y −CX(c)‖F . Manip-

ulating X(c) we can construct partial circulant dictionaries, e.g., C ∈ R
n×p that

contains only p ≤ n non-consecutive atoms. These constructions are useful since
a) we do not expect input datasets to include all possible shifts of a character-
istic, but a localized subset, and b) in many cases two consecutive shifts will
convey similar information (they are highly correlated) and thus a particular
selection pattern (e.g., only atoms with odd indices) may prove advantageous.

Here we deal with X(c) =
[

x
(c)
1 0 x

(c)
3 . . . x

(c)
2p−1 0 . . . 0

]T

, where the nonzero

rows are obtained from an OMP run with only the p atoms and they correspond
to p nonconsecutive, odd indexed, circulant atoms.

Spatial constraints Φ(•). The time series in Y are radially arranged and thus
provide spatial information. For each subject separately, we explicitly account
for this spatial correlation by using one of two known convex penalty functions:

Φ1(X) =
J∑

i=1

‖xi − xi+1‖1 or Φ2(X,D) =
J∑

i=1

‖Dxi −Dxi+1‖2, (2)

where the indices wrap modulo J . For neighbouring time series, Φ1 enforces
similar sparsity patterns (hence the �1 constraints) while Φ2 enforces smooth
transitions between them by imposing similarity (in the �2 norm) in their recon-
struction. In the alternating optimization procedure that solves the dictionary
learning problem these two penalties are considered when updating the repre-
sentations X, thus D is available. Alternatively, we also consider S–OMP [9],
which provides sparse approximations with an explicit constraint of equality on
the sparsity pattern of predefined groups, which in our case are groups of time
series that use the same circulant component among the p.

Subspace identification. After solving the MC–DL problem, we use the rep-
resentations in X to group and analyse the dataset into subspaces, the unique
linear combinations that use the same sparsity pattern (same combinations of
atoms). If from the total number of available time series K ·J we find Ni having
the sparsity pattern of subspace Si we attach to this subspace an initial impor-
tance of Ni/(K · J). Since the number of possible subspaces is combinatorial we
keep the dimensions of the dictionary low (or impose sparsity pattern similarity).

To analyze relationships between the learned subspaces, based on the princi-
pal component of each subspace (extracted by the singular value decomposition
of the time series in the space) we establish correlations, μij , between the sub-
spaces i and j and construct a left stochastic matrix T (i.e.,

∑

i Tij = 1), with
transitions Tij describing the probability of transitioning from subspace i to j:

Tii = Ni/(K · J) and Tij = |μij |(
∑

k �=j

|μkj |)−1 (1− Tii) when i �= j. (3)

The probability of staying on a subspace (Tii) is defined by its initial importance
while the probabilities of transition are the weighted correlations between sub-
spaces. The final probabilities are defined by the stationary vector π: the left
eigenvector of T associated with the eigenvalue of value one.



566 C. Rusu and S.A. Tsaftaris

2.2 MC–DL for Unsupervised Ischemia Estimation in CP–BOLD

We assume as input a single, K = 1, CP–BOLD MRI stack of a subject. We
extract time series as above, but now Y ∈ R

n×J contains only radially arranged
time series of one subject. The objective is to find territories of ischemia. We
assume that remote to the ischemia time series will behave as in the baseline
case. Thus, we separate time series in Y by how much circulant structure they
contain, from those that do not, in an unsupervised fashion.

To achieve this we first exploit the result (atoms and initial decomposition) of
MC–DL, especially the column-by-column residual energy contained in E = Y −
DX. Unlike approaches that explicitly add constraints on E [11], we analyse the
energy content of the residual with respect to the circulant components learned
and the total energy of the dataset. We obtain an initial ischemia estimate by:

Ii = sgn(
∑

j

x
(c)
ji )‖x(c)

i ‖2‖yi‖−1
2 , i = 1, . . . , J, (4)

As we will see in the next sections, we link high values of this indicator with the
behavior of BOLD signal intensities under baseline conditions. The first term in
(4) punishes undesirable negative correlations while the other two measure the
similarity to the circulant. Based on this initial eschimia estimate Ii ∈ [−1, 1],
we then deploy label consistent dictionary learning [12] that adds to the overall
optimization problem (1) a classification error γ‖H−WX‖2, where H ∈ R

2×J

contains the class labels obtained by thresholding Ii and W ∈ R
2×m contains

the parameters of the linear classifier. Following the setting of [12] we update
all variables, including Ii, in the same alternative iterative fashion. The final
estimates are provided by Ii.

3 Results and Discussion

Baseline Model Accuracy: We use K = 10 CP–BOLD MRI data obtained
from canines with scan parameters as described in [2]. We set J = 24 segments,
n = 28 and follow the pre-processing steps of Sec. 2.1.

With MC–DL we extract, by the circulant component shown in Fig. 2 upper
left corner, a CP–BOLD characteristic pattern of BOLD variation throughout
the cardiac cycle. Fig. 2 further shows the result obtained by the MC–DL with
p = 3 circulant non-consecutive odd indexed components, g = 6 general compo-
nents for the target sparsity s = 6 imposed by the S–OMP algorithm for three
groups, corresponding to the three circulant components. The left panel shows
the extracted circulant components and dataset partitioned into three groups
corresponding to the three allowed shifts and thus the three subspaces (sparsity
patterns), with their importance π as defined in the end of Sec. 2.1, shown in
parenthesis. The right panel shows how important each atom is (energy content
on the rows on X) and shows clearly the presence of shifts confirming [4]. It
also provides a mechanism for selecting p: stop adding circulant atoms when a
general one has higher importance. To choose g indicators such as the overall
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Fig. 2. Model estimated with MC–DL with p = 3, g = 6 and target sparsity s = 6
using the S–OMP from baseline time series: (left) the circulant kernel, two of its shifts
and the three subspaces they construct; (right) relative atom importance.

error ε or a low importance can be used. Table 1 shows how different regular-
izer values affect for MC–DL with �1 penalty the relative representation error
(ε = ‖Y − DX‖F/‖Y ‖F , %) and the relative number of nonzero coefficients
in the representations (NNZ, %). Unsupervised Ischemia Estimation: To
test our method, we use an animal model of ischemia. Following [2], we placed a
hydraulic occluder in the LAD of a canine to induce controllable stenosis. The
animal was scanned twice with CP–BOLD MRI: before stenosis (baseline, ab-
sence of disease) to serve as control and at 20 minutes after stenosis (ischemia).
Stenosis was held for 3 hours and upon release and reperfusion we obtained a
late gadolinium enhancement scan and post-mortem gross histology for visual
reference of the infarct. We use the pre-processing steps (Sec. 2.2), with n = 28,
and J = 24 and analyze separately the CP–BOLD data before stenosis and
during ischemia. We construct a model based on the MC–DL, �1 penalty, with
dimensions as before (p = 3, g = 6, α = 1, β = 1) and use the threshold of
0.5 on Ii to set H . The final values of Ii are color-coded for visualization and
estimation of ischemia. Findings are shown in Fig. 3. In (c) a clear infarct in
the LAD territory is seen and confirmed by gross histology (f). With the pro-
posed method processing CP–BOLD data under ischemia (b) we find within
the LAD territory, significant deviations (color-coded with red hues) from the
CP–BOLD characteristic pattern (green hues). These deviations are not present
before stenosis (a). Our method because it jointly considers the correlation in

Table 1. Relative representation error and relative number of nonzero coefficients (ε
/ NNZ) for various regularization parameters α, β and penalty Φ2.

α \ β 0 0.5 1 5 10

0 12% / 100% 12% / 100% 13% / 100% 16% / 100% 22% / 100%
0.5 12% / 93% 13% / 94% 13% / 94% 16% / 95% 22% / 96%
1 13% / 86% 14% / 88% 14% / 88% 18% / 90% 24% / 90%
10 31% / 31% 31% / 31% 32% / 31% 36% / 33% 42% / 33%
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a. b. c. 

f. d. e. 

Fig. 3. Comparison of the proposed spatial maps with [2] on a canine with LAD
stenosis: green no ischemia present, red ischemia.

the dataset under sparsity and spatial constraints, it obtains accurate and real-
istic continuous territories of ischemia presence, and reduces false positives when
disease is absent. On the contrary, as shown in (e) the approach in [2], due to
the hard threshold (> 1: green; < 1 red), finds erroneously ischemia throughout
the myocardium and also when disease is absent (d). Relying only on two values
at end-systole and end-diastole, it is more susceptible to shifts and noise in the
time series (possibly from artifacts or errors in registration).

In the future, to enable true pixel-level analysis, we will incorporate more
precise myocardial segmentation [13, 14] and registration [15, 16]. Also, we plan
to add a probabilistic interpretation to the spatial maps, as commonly performed
in brain fMRI, exploiting further the statistics of the learned spaces in baseline.

This paper uses 2D+time imaging and as such longitudinal motion can influ-
ence the findings, which can be seen as limitation. The desirable 3D+time imag-
ing requires prohibitive long breath holds, which can be solved by free-breathing
approaches under development. We do not provide fully quantitative validation,
but a proof of concept. Simultaneous PET-MR experiments, under development,
can provide the means for such validation, with PET as the gold-standard.

4 Conclusion

In this paper we propose a structured multi-component dictionary learning
framework to learn and extract characteristic behaviour in myocardial BOLD
signal intensity time series as obtained with CP–BOLD MRI. We use circulant
and general dictionaries to decompose the data and spatial priors to enforce
the model to learn local correlations. We use the same framework to learn how
data behave when disease is absent and to identify in an unsupervised fashion
ischemic territories in the myocardium in datasets when ischemia is present. We
tested our approach on data from canine experiments and found that it outper-
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forms previous approaches, opening a future towards a pixel-level visualization
and quantification of ischemia on the basis of CP–BOLD MRI at rest.
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