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Explicit Shift-Invariant Dictionary Learning
Cristian Rusu, Bogdan Dumitrescu, and Sotirios A. Tsaftaris

Abstract—In this letter we give efficient solutions to the con-
struction of structured dictionaries for sparse representations. We
study circulant and Toeplitz structures and give fast algorithms
based on least squares solutions. We take advantage of explicit cir-
culant structures and we apply the resulting algorithms to shift-
invariant learning scenarios. Synthetic experiments and compar-
isons with state-of-the-art methods show the superiority of the pro-
posed methods.

Index Terms—Dictionary learning, shift-invariant learning,
sparse representations.

I. INTRODUCTION

I N THIS letter we study the dictionary learning problem in
the context of sparse representations [1]. Given a dataset

and a target sparsity , , the optimization
problem can be stated as:

minimize

subject to (1)

where is the number of non-zero elements of columns ,
also known as the pseudo-norm, is the
Frobenius norm, columns are called the atoms of the dictio-
nary and the sparse representations matrix is

. The dimensions obey .
To solve this challenging problem, most batch dictionary

learning algorithms follow a two-step alternating optimization
procedure: keep the dictionary fixed and find the sparse repre-
sentations in using a sparse approximation algorithm, e.g.,
Orthogonal Matching Pursuit (OMP) [2]; keep the representa-
tions fixed and update the dictionary , either all at once [3]
or one atom at a time [4].
In this letter we study in depth two dictionary structures: circu-

lant and Toeplitz. Keeping the alternate optimization process, we
provide efficient solvers that exploit maximally such structures.
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We apply these structures to the construction of explicit shift-in-
variant learning algorithms. While other works [5]–[11] treat
shift-invariance in an indirect way, the proposed explicit con-
struction offers clear performance advantages in experimental
comparisons.
The problem of learning shift-invariant structures has been

extensively studied. For example, in [5], [9] the authors propose
an extension of K-SVD to accommodate for the possible shifts in
the given dataset. Similarly, a variation of the K-SVD algorithm
is given in [6], allowing for shift-invariant structures by using
a graph-based dictionary and an atom update procedure called
Shift-Invariant Singular Value Decomposition (SISVD). The
MoTIF learning algorithm [7] is based on the idea of learning
translated dictionaries (all possible translations of a few given
generating functions, called kernels) such that they are highly
correlated in mean with the signals in the training set. In the
end, the problem reduces to solving a generalized eigenvalue
problem. Finally, in [8] we encounter a shift-invariant dictionary
learning method based on tree-structured dictionaries. Appli-
cations of these shift-invariant learning methods include audio
processing [5], image analysis [7], [8] and feature extraction
[11].
Circulant structures were previously considered in the context

of nonnegative matrix factorization [12] (NMF). The union of
circulants is explicitly used to impose structure and speedup the
classical multiplicative update equations of NMF.
Our approach is different from all the above, not only in the

overall dictionary learning algorithm, but also in the waywe take
advantage of the imposed structures.
The letter is organized as follows: Section II presents C–DLA,

the proposed circulant dictionary learning algorithm, Section III
uses the previously stated results to construct UC–DLA, an al-
gorithm capable of learning a union of circulants, Section IV ex-
tends the C–DLA to Toeplitz structures, Section V presents the
results and Section VI offers conclusions.

II. CIRCULANT DICTIONARY LEARNING

The first class of dictionaries that we consider are the circu-
lants . These square matrices are completely defined
by the first column ; every column is a circular down shift
of the first one called kernel:
(so-called right circulant), where is the orthonormal
permutation matrix that circularly downshifts a column vector
by left matrix-vector multiplication. The main property of such
matrices is their eigenvalue factorization:

(2)

where is the orthogonal Fourier matrix ( ),
is the conjugate transpose of and the diagonal matrix

has diagonal . Due to the properties
outlined before, based on the Fourier transform, a fundamental
outcome related to circulant matrices is the fast matrix-vector
multiplication:

(3)

1070-9908 © 2013 IEEE



RUSU et al.: EXPLICIT SHIFT-INVARIANT DICTIONARY LEARNING 7

where denotes the elementwise multiplication.
This section is primarily concerned with minimizing
, where is right circulant and , are fixed.

In the context of dictionary learning algorithms, we rely on the
eigenvalue factorization (2) and the fact that all multiplications
with orthogonal matrices preserve the matrix norms:

(4)

In this new formulation, the tilde matrices contain the Fourier
transforms (of and ). Since is a diagonal, the minimization
of the Frobenius norm can be done decentralized, by taking the
corresponding rows of and .
Furthermore, since we are considering only real dictionaries
, we have the symmetry restrictions:

where , if
is even, and are purely real. Attaching this structure and

matching the corresponding rows in (4) in pairs the problem
reduces to solving a series of least squares problems involving
the rows of and :

(5)

with for . When the input data
are real, the conjugate symmetric structure is implicitly imposed
by the Fourier transforms taken on the columns of and –the
corresponding rows are complex conjugate. The solution
of (5) is given by .
With these observations, we can proceed to provide a full de-

scription of the circulant dictionary learning algorithm. For sim-
plicity, we assume even herein.
C–DLA:Circulant Dictionary Learning Algorithm: Given the

dataset , the number of iterations and the target
sparsity , design the circulant dictionary and the
representations , such that

is reduced.
• Initialization: Construct kernel by extracting the prin-
cipal component of . Compute .

• Iterations: For
1) Produce the sparse representations by the OMP.
2) Compute , with

and mirror the conjugate to produce .
3) Normalize . Update error term .

The dictionary update and sparse approximation steps can
avoid constructing the whole matrix . When using the OMP
algorithm, efficient publicly available implementations (such
as the OMP-box [13]) use as inputs the projections and
the Gram matrix . Since and are both already
computed, evaluating reduces to elementwise multipli-
cations and inverse Fourier transforms (see (3)). Note that the
symmetric Gram matrix is also circulant, i.e., , with

. Observe that while is
computed only once, we need to compute at every iteration.
The structure of the dictionary simplifies also other operations,
for example the computation of the mutual coherence becomes:

. The final, explicit

dictionary is .

III. SHIFT-INVARIANT DICTIONARY LEARNING

In this section we explore the application of circulant matrices
in the sparse representations context, with a focus on shift-in-
variant learning. Observe that the simplest shift-invariant dictio-
nary is actually a circulant.

Remark 1: With a circulant , the OMP is shift-invariant.
More precisely, denoting the solution with
given by OMP for the input vector , then for all we
have that .

Proof: We denote with the residual of the sparse rep-
resentation obtained with OMP at each of its iterations, which
is initially and finally . We show by in-
duction that the residual of the shifted problem is always .
Initially, this is obviously true. Let us assume that this is also
true after a number of iterations. Since is an orthonormal
matrix, then we have . Hence, if in the se-
lection step of OMP the column is chosen for the original
problem, with , then
is chosen for the shifted problem. Since all selected columns
in the shifted problem are the columns selected in the original
problem multiplied by (the orthogonal) , the least squares
problem produces the residual , validating the initial assump-
tion. As is circulant and commutes with , it follows that

and hence .

Since in the previous section we have described an algorithm
to learn a single circulant dictionary, we extend the result for
the design of unions of circulants. When dealing with a union
of circulant matrices we also partition the
representations . To solve this problem
we deploy a Block Coordinate Relaxation method that involves
updating the whole dictionary by successively updating each cir-
culant dictionary one by one. The sparse reconstruction algo-
rithm used is the OMP.
UC–DLA: Union of Circulants Dictionary Learning Algo-

rithm: Given the dataset , the number of circulant
blocks , the number of iterations and the target sparsity , de-
sign the dictionary , composed of circulant blocks,
and the representations ,
such that is reduced.
• Initialization: Construct the dictionary using randomly
selected items from as kernels.

• Iterations: For
1) Apply OMP to construct with target sparsity .
2) Update each circulant with , using the
C–DLA applied with target sparsity for 1 step
(avoiding the sparse approximation) on the dataset:

(6)

where is restricted to the data items that use .
The structure of this algorithm is based on invoking C–DLA

in a scheme similar to the one used for the creation of unions of
orthonormal dictionaries [14].

IV. EXTENSION TO TOEPLITZ DICTIONARIES

We consider a generalization of the previous circulant result to
Toeplitz matrices , defined by the first row and column
concatenated in . Properties of the circulant matrices
can be extended to the Toeplitz case by embedding the matrix
into a larger circulant structure .
Of course, could be embedded in a circulant,
but we prefer an even size for the convenience of FFT calcula-
tions. The equivalent fast matrix-vector multiplication algorithm
from (3) now becomes , where

is the mask and is the zero-padded vector.
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Analogously to the circulant case, this section provides an effi-
cient solution to the convex optimization problem:

minimize (7)

where is Toeplitz and , are fixed. Using (2) we get:

(8)

where is the Fourier transform of the extended matrix and
represents the first rows of . Considering:

(9)

and observing that expressing matrix multiplications as a linear
transformation on [15] we reach:

(10)

The transformation vec denotes the vectorization of an input ma-
trix and denotes the Kronecker product. Equality in (9) holds
since the Frobenius norm is elementwise. Denoting the result of
this product and taking ’s structure in considera-
tion we obtain:

(11)

where and consists of the columns
of corresponding to the diagonal entries of , given by

, where is the th row of and is
the th column of –we again have a conjugate symmetric
structure . Thus, (7) reduces to the
unconstrained least squares problem:

minimize (12)

Notice that the pseudo-inverse solution becomes
, remember , which per-

mits us to avoid the explicit construction of the large matrix
and take full advantage of its structure.
When using Toeplitz matrices as dictionaries, it is important to

mention that we do have to tend to the atom norms (unlike with
the circulant case). That is why, when updating using OMP we
use the normalized dictionary (which is not Toeplitz any-
more) and then we return the Toeplitz matrix and the new rep-
resentations where the diagonal matrix
contains the norms of the atoms. Due to this explicit, separate
normalization step the initial factor from (2) is omitted in
(8).
Based on the general alternate optimization learning pro-

cedure and (12) a Toeplitz dictionary learning algorithm
(T–DLA), analogous to C–DLA, can be obtained (omitted here
for brevity). Naturally, the T–DLA is computationally less
efficient than C–DLA but it allows for richer structure.
Remark 2: These ideas can be adapted to the circulant case.

Consider .
While the C–DLA deals with the frequency component , this
approach offers direct access to the kernel . This formulation
accommodates for the problem descriptions in [7] where short
atoms are translated across long signals.
Remark 3: The T–DLA can also produce overcomplete dic-

tionaries .

Fig. 1. Average detection rate as a function of noise level for different shift-
invariant dictionary learning methods.

Fig. 2. Average frequency of utilization for all atoms of all the bases. Ideally,
the three peeks should be .

V. RESULTS

A. Shift-Invariant Learning - Synthetic Example

The goal of UC–DLA is to recover the kernels from an avail-
able dataset. To open the possibility for comparison with other
shift-invariant methods [9], [10], [11], we create the dataset fol-
lowing the instructions in [9]. This experiment follows the setup:
with , , , randomly produce kernel
columns in allowing for only a maximum of cir-
cular shifts (out of the possible) and generate the dataset

, by taking each ,
with , , .
We present comparisons of UC–DLA with other shift-in-

variant methods: SI-K-SVD [9], SI-ILS-DLA [10] and M-DLA
[11]. For reference, the K-SVD algorithm is also used to
train a dictionary of size , the kernels
in all possible shifts. The UC–DLA produces basis

. To check the detection of a kernel,
we take the absolute value dot products between the original
kernel and the trained one and check a threshold of 0.99. Above
this value the kernel is considered detected and the circulant is
attributed to the kernel. The UC–DLA requires approximately
12 seconds with iterations. The results are averaged
over five tests.
Fig. 1 clearly shows that the proposed method substantially

outperforms current state-of-the-art algorithms, demonstrating
that explicit treatment of shift-invariance has measurable returns
(to the tune of 20% with respect to SI-K-SVD in the 30 dB case).
Since UC–DLA is not supplied with the correct number of shifts
in the dataset ( ) and it produces the full circulants of
components, Fig. 2 shows on average, over all circulant
bases, how many times each component was selected to take
part in any representation – from which an estimation of can
be made. The proposed algorithm correctly identifies the three
shifts in the dataset.
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Fig. 3. Example BOLD curves and the circulant kernel.

Fig. 4. Frequency of utilization for BOLD time series.

Fig. 5. Representation errors of C–DLA and PCA for the BOLD dataset.

B. Medical Imaging Application

An interesting application arising in the medical imaging
arena is the analysis of cardiac phase resolved BOLD MRI time
series [16]. These short-length time series are extracted from
imaging data of the myocardium and show the evolution of
oxygenation in the myocardium as a function of cardiac phase.
They typically appear to have a maximum around 1/3 of the
time series (coinciding with the location of the end-systole)
fading out towards their end (location of end-diastole). Several
of such time series can be extracted from several locations of
the myocardium in a single MRI study, with the interesting
characteristic that several shifts exist between the time series
due to known physiological effects [16]. Thus, we are interested
to see the capabilities of shift invariant learning, i.e. the C–DLA,
in identifying this characteristic curve and its possible shifts that
may appear due to physiology.
The available dataset consist of time series extracted from

imaging data belonging to 10 subjects. The time series have the
mean subtracted and they are normed, interpolated and concate-
nated columnwise in –24 per subject, each interpo-
lated to 28 samples. In Fig. 3, the dotted thin lines show some
example time series extracted while the solid line denotes the
circulant kernel computed using C–DLA. Fig. 4 shows the fre-
quency of utilization of the computed kernel and its shifts with a

distinctive dominant group for shifts , thus showing
a focused utilization of a few particular shifts. Fig. 5 shows the
relative representation errors ( ) of C–DLA, on
the horizontal axis having the sparsity , as compared to the Prin-
cipal Component representations (PCA) using components.
Notice that using only one component in each sparse representa-
tion with the C–DLA we reach approximately 50% representa-
tion error. Even as increases, C–DLAmaintains a performance
advance compared to PCA indicating the strong shift structure
in the dataset. This type of approach allows for the analysis of
the BOLD MRI time series and reaching an interpretable result.

VI. CONCLUSIONS

In this letter we present new learning algorithms for the con-
struction of structured dictionaries for sparse representations,
namely: circulant and Toeplitz. When learning structured dictio-
naries, the algorithms presented are fast and have a close form
solution, reducing to Fourier transforms, matrix-vector opera-
tions and/or least squares problems. Also, we extend the results
and produce algorithms able to learn shift-invariant dictionaries.
Comparisons with state-of-the-art algorithms show the effective-
ness of the proposed methods.
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