
life sciences

IEEE SIGNAL PROCESSING MAGAZINE100 SEPTEMBER 2004

e are witness-
ing a consider-
able interaction
between biolo-
gy and signal

processing. Bioinformatics research
has been benefiting tremendously
from the increasing application of
digital signal processing (DSP) tech-
niques in solving bioinformatics
problems, using, for example,
wavelets and Fourier transforms to
study deoxyribonucleic acid (DNA)
sequences, analyzing microarray
images, and applying control theory
to regulatory networks [7].
Conversely, actual chemistry has
been recently used to solve compu-
tational problems, giving rise to
DNA computing or more general
biocomputing. The main focus of
this article is to review the most sig-
nificant results in DNA computing
from a signal-processing point of
view and to identify areas of inter-
action between DNA computing
and DSP. In an accompanying arti-
cle, we will provide a brief descrip-
tion of an application of DNA com-
puting in DSP and point to future
research directions.

Adleman’s pioneering work [1],
[2] set the stage for the new field of
biocomputing research. His main
idea was to use actual chemistry to
solve problems that are either
unsolvable by conventional com-
puters or require an enormous
amount of computation. Adleman’s
long-term vision was to use DNA
computation to design a general-
purpose computer.

There are several reasons why
computing with DNA may offer
advantages over electronic comput-
ing. These include memory capacity,
massive parallelism, and power
requirements [2]. Regarding memo-
ry capacity, consider that 1 g of
DNA, when dried, occupies a vol-
ume of approximately 1 cm2, while
it can store as much information as
approximately 1 trillion compact
discs [2]. The massive parallelism is
illustrated by Adleman’s experiment,
which was carried out in 1/50th of
a teaspoon of solution, and approxi-
mately 1014 paths were simultane-
ously concatenated in about 1 s.
Not even the world’s fastest super-
computer built by the NEC Corp.
has this ability. [The Earth
Simulator, built by NEC for Japan’s
Earth Simulator Center, has the
ability of 40 TFLOPS (http://
www.nec.co.jp/press/en/ 0203/
0801.html).] Finally, as far as ener-
gy efficiency is concerned, in princi-
ple 1 J is sufficient for approximately
2 · 1019 ligation operations (to be
explained later), while existing
supercomputers operate in the sig-
nificantly smaller range of 109 oper-
ations/J [2]. Although the fidelity
of biooperations is low [16], these
practical incentives and the fascina-
tion of being able to perform com-
putations with biological means
have inspired many researchers to
pursue the challenging topic of
DNA computing.

This article introduces the field
of DNA computing to the signal
processing community, although

various signal processing tech-
niques have been used in DNA
computing; for example, in design-
ing code words for mapping binary
data to DNA data and improving
the error rates in DNA interactions.
The early steps in the field are sum-
marized, and the most significant
contributions are presented. In a
subsequent article, we will focus on
the use of DNA computing for
solving DSP problems.

DNA Essentials

The DNA Molecule, History,
and Terminology
A double helix of DNA is made
from two single strands of DNA,
each of which is a chain of
nucleotides [37]. A nucleotide is an
organic molecule made up of three
basic parts: a phosphate group, a
five-carbon sugar group, and a
nitrogenous side group, which is
more commonly called a base. Four
different nucleotides occur in
DNA: adenine (A), guanine (G),
thymine (T), and cytosine (C).
Nucleotides can be joined together
in a linear chain to form a single
strand of DNA.

A short single strand of DNA
consisting of up to 100 or so
nucleotides is called an oligonu-
cleotide or oligo. It has a backbone
of alternating sugar and phosphate
groups with one of the four bases
bound to each sugar group. The
backbone gives an oligonucleotide a
polarity; i.e., it has two distinct
ends, the 5′ end and the 3′ end.

Sotirios A. Tsaftaris, Aggelos K. Katsaggelos,
Thrasyvoulos N. Pappas, and Eleftherios T. Papoutsakis

DNA Computing from a Signal Processing Viewpoint

W

1053-5888/04/$20.00©2004IEEE

IEEE SIGNAL PROCESSING MAGAZINESEPTEMBER 2004 101

The chemical structure of the
bases allows for the unique pairing
between A-T (double hydrogen
bond) and G-C (triple hydrogen
bond). Each base in DNA has its
unique Watson-Crick complement,
which is formed by replacing every A
with a T and vice versa, and every G
with a C and vice versa. Every
oligonucleotide has a complementary
sequence with opposite polarity; for
example, the complementary
sequence of 5′-ATG-3′ is 3′-TAC-5′.

If two complementary sequences
meet in a solution under appropriate
conditions (temperature, pH,
sequence length), they will attract
each other and form a double-
stranded structure. This process is
called hybridization. Through hydro-
gen bonds and Van der Waals forces,
these pairings are the basis for the
exquisite molecular recognition that
allows DNA to act as an informa-
tion-carrying molecule. There are
two types of hybridization: 1) specif-
ic hybridization, which refers to cases
where the two single strands are per-
fectly complementary at every posi-
tion and the double-stranded
molecule that is formed is perfect;
and 2) nonspecific hybridization, for
which the sequence may not be
completely complementary, and,
thus, it may contain mismatched
base pairs, which will appear as
“bubbles” or “wobbles.”

Tools for Manipulating
DNA Molecules
In this section, useful tools for
manipulating DNA molecules are
presented with DNA computing
applications in mind. Useful intro-
ductory material for DNA manipu-
lation for DNA computing can be
found in [20]. For a more extensive
background in DNA, interested
readers should consider molecular
biology texts, such as [37].

DNA annealing is the process of
DNA hybridization when performed
in a cell. From a DNA computing

perspective, DNA hybridization can
provide a mechanism for binding
together single stranded molecules.
DNA melting, or DNA denatura-
tion, if performed in vitro, is the
opposite of DNA annealing. When
the temperature is raised, the dou-
ble-stranded sequence breaks into
(melts) two single-stranded parts.
While prediction of DNA annealing
is very hard, there has been a lot of
work on predicting DNA melting
through thermodynamic studies
(see, for example, [21] and [29]).

Polymerase chain reaction (PCR)
is used to amplify a target that con-
tains predefined sequences by run-
ning a cycle of annealing-melting-
extension operations. Both target
and the predefined sequences
(primers) are introduced in a solu-
tion containing appropriate concen-
trations of salt with DNA poly
-merase (an enzyme that duplicates
DNA) and monomers (A,T,G, and
C). PCR can give a yes/no answer
to whether a given target is present
in a solution.

Gel electrophoresis is a technique
for separating molecules in a gel
medium by applying an electrical
field. The frictional force of the gel
material acts as a “molecular sieve,’’
separating the molecules relatively
to their size and shape.

Affinity purification is a process
that permits single-stranded DNA
molecules containing a given sub-
sequence to be filtered out from a
heterogeneous pool of other DNA
molecules. Strands complementary
to the subsequence are attached to
magnetic beads. The heteroge-
neous solution is passed over the
beads and strands containing the
subsequence anneal to the com-
plementary sequence and are
retained, while strands not con-
taining it pass through.

Ligation is the process of joining
together double stranded DNA with
compatible sticky ends with the use
of DNA ligase. A double-stranded

DNA molecule can either have blunt
ends or it can have single–stranded
overhanging ends (called sticky
ends) at one or both of its extremi-
ties. The enzyme DNA ligase joins
together, or ligates, the end of a
DNA molecule to another molecule.

One class of enzymes, called
restriction endonucleases, recognize
a specific short sequence of DNA,
known as a restriction site and cut
any double-stranded DNA at that
location. Using enzymes called
exonucleases, either double-stranded
or single-stranded DNA molecules
may be selectively degraded from
the ends in.

The Field of
DNA Computing
The field of DNA computing started
with the pioneering work of
Adleman in the late 1990s [1], [2].
He demonstrated his ideas by solv-
ing a specific combinatorial prob-
lem, the Hamiltonian path problem,
by applying principles of combinato-
rial chemistry and DNA chemistry.
The principles of combinatorial
chemistry had been demonstrated in
the pioneering work of Brenner in
the 1990s [6]. We provide a more
elaborate analysis of Adleman’s
experiment next.

Adleman’s Experiment
As stated above, the capability of
encoding information in a DNA
sequence and manipulating DNA
strands in vitro was used in [2] to
solve a seven-node instance of the
directed Hamiltonian path prob-
lem, a known NP-complete prob-
lem (a problem not solvable in
deterministic polynomial time). In
brief, the essence of this problem is
for a given graph with a starting
node v-in and ending node v-out to
find a valid path by visiting all other
nodes only once.

The following (nondeterminis-
tic) algorithm provides a solution
to the problem:

life sciences continued

IEEE SIGNAL PROCESSING MAGAZINE102 SEPTEMBER 2004

▲ Step 1) Generate random paths
through the graph.
▲ Step 2) Keep only those paths that
begin with v-in and end with v-out.
▲ Step 3) If the graph has N ver-
tices, then keep only those paths
that go through exactly N vertices.
▲ Step 4) Keep only those paths
that enter all of the vertices of the
graph at least once.
▲ Step 5) If any paths remain, say
yes; otherwise say no.

Utilizing the tools for manipulat-
ing DNA discussed in the previous
section, next we discuss the laborato-
ry procedure followed by Adleman
to implement the above algorithm.
To implement Step 1, each vertex of
the graph was encoded into a ran-
dom 20-nucleotide strand of DNA
that was synthesized. Then, for each
(oriented) edge of the graph, a DNA
sequence was synthesized consisting
of the second half of the sequence
encoding the source vertex and the
first half of the sequence encoding
the target vertex (see Figure 1). By

mixing together single strands
encoding the edges and comple-
ments of single strands encoding the
vertices, DNA sequences corre-
sponding to compatible edges were
linked together. Indeed, by con-
struction, a complement of a vertex
strand would bind to both a strand
encoding an edge entering the vertex
and a strand encoding an edge exit-
ing the vertex. A subsequent ligation
reaction resulted in the formation of
DNA molecules encoding random
paths through the graph. To imple-
ment Step 2, the product of Step 1
was amplified by PCR using as
primers the complements of the
words coding the start and the end
node. Thus, only those molecules
encoding paths that include v-in and
v-out were amplified. A valid candi-
date has to pass through each vertex
and therefore has to have a certain
length. Implementing Step 3, gel
electrophoresis was used to retain
only molecules encoding paths of the
desired length. Step 4 was accom-

plished using repetitive applications
of affinity purification. In each appli-
cation, the strands that were retained
contained as a subsequence the
encoding for the first vertex, second
vertex, and so on, until only those
paths that pass through all vertices
remained. To implement Step 5, the
presence of a molecule encoding a
Hamiltonian path was checked by
amplifying the result of Step 4 by
PCR. The molecule was then
sequenced to determine the
sequence that encodes the actual
solution to the problem.

Although the actual computation
took a fraction of a second, it took
seven days in the lab to perform the
above laboratory procedure and
read the results. Laboratory
automation and Lab-on-a-Chip
products clearly indicate that labora-
tory procedures will become more
efficient and less time consuming,
bringing DNA computing closer to
reality in the not-too-distant future.

At the beginning, the work of
Adleman stirred the interest of many
researchers but led to some confu-
sion about the capabilities and the
performance of DNA computing.
Initial work considered the solution
of large combinatorial search prob-
lems. The scalability of the approach
became immediately an important
issue, and numerous publications
addressed it and suggested improve-
ments of the procedure [9].

Applications of DNA Computing
A significant body of research, both
theoretical and experimental, fol-
lowed Adleman’s work. While there
has been a variety of DNA-based
solutions to various problems, such
as NP-complete problems, it is not
the purpose of this article to cover
the broad range of research in the
field but to provide an overview of
interesting DNA computing appli-
cations with a signal processing per-
spective in mind. For further study,
interested readers are directed to

▲ 1.Although in Adleman’s experiment a seven-node instance was used for illustration
reasons in (a) a four-node instance is used, adapted from [2]. The nodes (vertices) are
represented as cities connected by nonstop flights (edges). The objective is to determine a
route starting in Orlando and ending in New York passing through all the cities exactly
once. To achieve a DNA-based solution, every city is given a DNA name (GAGCGG for
Chicago) using unique first (GAG) and last (CGG) names (last names are depicted in a
smaller font) as illustrated in (b). DNA Flights can then be determined by concatenating
the last name of the departing citsy with the first name of the arriving city as seen at the
bottom of (b). For this example the DNA solution for the Hamiltonian path is the 18-base
sequence CCCATAGTCGAGCGTTCG. In the actual experiment the complements of the city
DNA names were used.

Chicago

New York

Miami

Orlando

City DNA Name Complement

Orlando
Miami
Chicago
New York

Flight

Orlando–Miami
Miami–Chicago
Miami–New York
Miami–Orlando
Chicago–New York

CCCATA
GTCGAG
GTCTCG
GTCAAA
CGTTCG

DNA Flight

AAACCC

ATAGTC

GAGCGT

TCGACT

TTTGGG

TATCAG

CTCGCA

AGCTGA

(a) (b)

IEEE SIGNAL PROCESSING MAGAZINESEPTEMBER 2004 103

review texts such as, but not limited
to, [10], [20], [24], [30], and refer-
ences therein.

Molecular Arithmetic and Circuitry
Bancroft and his group [13]
demonstrated the execution of the
first single-bit addition operations in
recombinant DNA, but their proto-
col did not support subsequent
arithmetic operations. Rubin and his
group [28] provided an experimen-
tal demonstration of reversible
arithmetic operations that allowed
further operations using the output
of arithmetic operations as inputs.
Finally, various research groups have
demonstrated molecular circuits
that behave like transistors [4] and
adders [31], [35].

Autonomous Molecular Computing
For some DNA computing approa-
ches, the biomolecular computation
required a considerable number of
laboratory procedures that usually
required human intervention. In
some cases, the actual laboratory
procedure was an inseparable part of
the algorithm and was not used just
to provide the output results. For
example, in Adleman’s work the lab-
oratory procedures were part of the
algorithmic steps. Autonomous com-
puting is a term commonly used to
describe methods that execute multi-
ple steps autonomously. Some trends
towards this direction include:

Autonomous computation using
restriction enzymes and ligase.
Shapiro et al. [5] demonstrated a
simple autonomous computation
using restriction enzymes and ligase
applied to double-stranded DNA to
execute state transitions of a small
finite automaton. As a proof of con-
cept, they provided experimental
procedures of a finite automaton
computing the parity of a sequence
of bits encoded in DNA sequences.

Self-assembled nanostructures.
With this approach, a computation is
executed by the self-assembly of

DNA nanostructures (tiles) from
component DNA single strands
[26]. Currently, this approach is
receiving much attention and is con-
sidered to be the next generation of
DNA computing. For a good source
of information, see [23].

Deoxyribozyme-based molecular
automation. Recently, the group of
Stojanovic and Stefanovic built a
DNA computer to play tic-tac-toe
[32]. Their device, MAYA, is a
deoxyribozyme-based molecular
automaton and represents the first
time artificial DNA molecules have
been assembled into circuits that
can make complex decisions. MAYA
is comprised of nine tubes that con-
tain synthetic DNA enzymes
responsible for guiding its moves.
The enzymes are designed to release
fluorescent molecules only when
specific DNA fragments are present
or absent. Combinations of these
enzymes make up the circuits in
MAYA that enable the analysis of
complex arrays of inputs to play tic-
tac-toe. The user inputs his/her
move in all tubes and the computer
responds by releasing a fluorescent
molecule in the tube that corre-
sponds to each move.

Cellular computation. A novel
approach towards automation is to
utilize microorganisms, such as bac-
teria, and modify, by re-engineer-
ing, the regulatory feedback systems
used in cellular metabolism to pro-
gram behavior that represents com-
putation. Some work has already
been demonstrated (see, for exam-
ple, [15]) but unfortunately such a
task is extremely difficult with the
current knowledge, and the proce-
dures can easily destroy the cell
instead of extending its behavior.

“Killer Apps’’ for
DNA Computing
It has been demonstrated from a
theoretical point of view that DNA
computing is universal (all purpose).
For example, DNA computing with

self-assembly [38] has been proven
to allow universal computation. It is
believed, though, that certain appli-
cations of DNA computing, called
“killer-apps,” will have a tremen-
dous impact on other fields and will
give ground for commercial use.

Genome research and biotech-
nology are believed to be the areas
that will benefit the most from
DNA computing. Adopting tech-
niques, which were developed for
code word design for DNA compu-
tation, new ways for designing
index tags for genomic databases
can be invented (see for example,
[25]). New biotechnology tech-
niques that arose from DNA com-
puting research have already been
demonstrated in [18] to assist in
faster sequencing of genomes.

Clelland et al. [8] demonstrated
for the first time the application of
DNA computing in security and
intelligence, proposing a DNA-
based steganography scheme of
embedding secret DNA messages in
a human genome that were extract-
ed with the use of PCR.

Nanorobotics and self-assembly
are examples of application of DNA
computing in nanotechnology.
DNA-assisted self-assembly of mate-
rials has been used extensively in
nanotechnology, as reviewed in
[30]. It has evolved even in building
molecular circuits using self-assem-
bly of DNA strands attached to
nanoparticles [19], a technology
that can lead to faster diagnostic
tools and laboratory methods. Yurke
et al. [36] presented the first molec-
ular motor by developing molecular
tweezers using three specially
designed DNA strands, which can
be programmed to open and close.

Significance of
Code Word Design
As we have already seen, a critical
step in Adleman’s experiment was
the assignment of DNA sequences

IEEE SIGNAL PROCESSING MAGAZINE104 SEPTEMBER 2004

to the available cities and routes. It
was clear from the beginning that in
order for DNA computations to be
useful, efficient, and reliable, sophis-
ticated DNA code word design
techniques should be developed.
Code word design is the key to suc-
cess for any DNA-computing appli-
cation and it is tightly dependent on
the application and the laboratory
procedures used.

In principle, the successful DNA
encoding requires finding DNA code
words that can carry information
useful for computation in a reliable
manner. A four-base (quaternary)
representation provides a large flexi-
bility in choosing a code word design
scheme. Ideally, a four-base word
would have been adequate to encode
all possible 256 levels of an 8-b digi-
tal sample or pixel value. However, a
number of constraints need to be
imposed in order to reduce the error
rate of biomolecular applications,
making such a straightforward map-
ping nonfeasible.

Constraints in
Code Word Design
In order to describe these con-
straints, the appropriate notation is
first introduced. We denote a DNA
sequence of length l by xl with val-
ues from the alphabet {A, T, G, C}
always in a 5′ to 3′ direction, by xC

l ,
the Watson-Crick complement of
the sequence, and by xl [i], the base
in position i from left to right.

Reading a sequence from right to
left, the reverse of a sequence can be
formed, denoted by x R

l . Let us con-
sider for example the sequence of
length 6 in direction 5 ′ to 3 ′ ,
x6 = 5′-ACAGTA-3′ . In this case
xC

6 = 3′-TGTCAT-5′ and x R
6 =

3′-ATGACA-5′.
The Hamming distance between

code words is defined as the num-
ber of base differences between the
two words. For example, the
sequences x6 = ATAGCT and
w6 = ATTGTT have a Hamming

distance equal to 2. We denote the
Hamming distance of two code
words xl and wl of the same length
l by dH (xl , wl).

The following constraints on
code words have been proposed and
used extensively. All constraints
refer to code words of the same
length l . The constraints are divid-
ed in two groups: self-constraints
and group constraints.

Self constraints depend only on
the code word under examination
and are:
▲ Consecutive bases constraint. In
some applications, consecutive
occurrences (also known as runs) of
the same base increase the number
of annealing errors. A constraint is
imposed on the maximum number
of consecutive occurrences of a
base in a code word, RB (xl), where
B ∈ {A, T, G, C}.
▲ Self-complementarity constraint. A
code word must not be self-comple-
mentary; that is, when it folds it
should not anneal to itself.
▲ The GC content constraint. The ratio
of the sum of occurrences of G and C
bases in a code word over the length
of the code word must lie in a certain
range to assure similar thermodynamic
characteristics between code words.

Group constraints depend on the
code word and the rest of the code
words and are:
▲ The Hamming distance constraint.
To limit unwanted hybridizations
between code words, all possible dis-
tinct pairs of code words xl , wl , the
Hamming distance must be greater
than some predefined threshold EH ;
i.e., dH (xl , wl) ≥ EH .
▲ The Reverse complement con-
straint. To limit hybridization
between a code word and the
reverse of another, all possible dis-
tinct pairs of code words xl , wl ,
dH (x R

l , wC
l) ≥ ERC must be true,

where ERC is some predefined
threshold.
▲ The Frame-shift constraint. If we
denote the concatenation of two

code words xl and wl by xl wl , then
no other code word z l �= {xl , wl }
can be found in the concatenation.
For example, for x6 = 5′-ACAGTA-3′

and w6 = 5′-ACCTGA-3′ , the con-
catenated sequence is equal to
x6w6 = 5′-ACAGTAACCT G A-3′.
Then, for example, code word
z6 = 5′-AGTAAC-3′ could not be a
valid code word since it can be
found in the concatenation; that is,
x6w6 = 5′-ACz6CTGA-3′ . In other
words, no code word must result
from the suffix of one code word
and the prefix of another.
▲ Illegal codes constraint. Specific
substrings must not occur in any
code word or concatenation of code
words. This is necessary when, for
example, restriction enzymes need
to be used and the site must be rec-
ognizable and specified.
▲ Melting temperature TM con-
straint. The melting temperature
TM of a duplex is defined as the
temperature at which half of the
strands are in the double-stranded
state. For perfect and nonperfect
duplexes TM can be estimated
under some constraints based on a
nearest-neighbor model, as des-
cribed in [21] and [29]. TM is a
critical parameter for designing
PCR experiments. According to
this constraint, all duplexes formed
by any code word and its comple-
ment must have similar melting
temperatures and in some small
range. In addition, TM of the
duplex formed by a code word and
the complement of another one
should be very small. This allows
for the control of the hybridization
errors by controlling the tempera-
ture of the PCR reaction.

Previous Work in
Code Word Design
Depending on the application, the
code words are designed to satisfy
some or all of the constraints listed
above. For the design of small-length
code words a brute force search may

life sciences continued

IEEE SIGNAL PROCESSING MAGAZINESEPTEMBER 2004 105

be adequate for obtaining a solution.
However, as the code word length
increases the search becomes very
complicated, and, therefore, more
sophisticated optimization methods
are required. For example, in [6] a
greedy algorithm to find possible
code words that satisfy the Hamming
constraint is utilized. A modified
Hamming distance, the H-Measure
metric, was introduced in [12] to
simultaneously model the Hamming
distance, frame shift, reverse com-
plement, and self-complementarity
constraints. The biological comput-
ing group at the University of
Wisconsin [11] and [34] derived
certain upper bounds on the maxi-
mum size of a code set and suggest-
ed the use of dynamic programming
and stochastic search to reduce the
complexity of the problem.

Other researchers followed a
“biological” approach using genetic
algorithms (see, for example, [3]
and [27]) or evolutionary tech-
niques [9]. In [33] a simulated
annealing technique satisfying cer-
tain sequence fitness criteria was
employed. In [14] a code word
design scheme inspired by nature is
presented in which rules are defined
that produce good code words
implemented in rounds of pro-
grammed mutagenesis in which spe-
cific sequences of DNA are allowed
to enter a given strand.

At this point we should note that
the design of code words for self-
assembly applications differs because
it has to account for the three-
dimensional behavior of the strands
and the structure formed upon their
annealing. For this reason molecular
folding prediction tools are used
[39]. In many cases it is desirable to
allow programmability, to create
tiles that have protruding ends
(sticky ends) and only interact with
another specific tile that has com-
patible ends. In [17] a mathematical
construction for creating such spe-
cific strands is provided.

Conclusions
Adleman’s work established the foun-
dations for biocomputing research.
In this article, we provided an analysis
of Adleman’s experiment and a
review of DNA computing applica-
tions from a signal-processing point
of view. In addition, we emphasized
certain key parts of DNA computing,
such as code word design, to which
the application of signal-processing
theory and techniques can offer sig-
nificant advantages.

The goal of this article is to
introduce to the signal-processing
community a new unexplored area
of research. As we will see in an
accompanying article, DNA-based
DSP can offer some significant
advantages over traditional DSP.

Acknowledgments
Mr. Tsaftaris would like to thank
the Alexander S. Onassis Public
Benefit Foundation for their contin-
uing financial support via their
scholarship program.

References
[1] L. Adleman, “Molecular computation of solu-

tions to combinatorial problems,” Science,
vol. 266, no. 5187, pp. 1021–1024, 1994.

[2] L. Adleman, “Computing with DNA,” Sci.
Amer., vol. 279, no. 2, pp. 54–62, 1998.

[3] M. Arita, A. Nishikawa, M. Hagiya, K. Komiya,
H. Gouzu, and K. Sakamoto, “Improving
sequence design for DNA computing,” in Proc.
Genetic and Evolutionary Computation Conf.
2000, 2000, pp. 875–882.

[4] E. Ben-Jacob, Z. Hermon, and S. Caspi, “DNA
transistor and quantum bit element: Realization
of nano-biomolecular logical devices,” Phys.
Lett. A, vol. 263, no. 3, pp. 199–202, 1999.

[5] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan,
Z. Livneh, and E. Shapiro, “Programmable and
autonomous computing machine made of
biomolecules,” Nature, vol. 414, no. 6862, pp.
430–434, 2001.

[6] S. Brenner and R. Lerner, “Encoded combina-
torial chemistry,” Proc. Natl. Acad. Sci., vol.
89, no. 12, pp. 5381–5383, 1992.

[7] J. Chen, H. Li, K. Sun, and B. Kim, “How will
bio-informatics impact signal processing?”
IEEE Signal Processing Mag., vol. 20, no. 6, pp.
16–26, Nov. 2003.

[8] C.T. Clelland, V. Risca, and C. Bancroft,
“Hiding messages in DNA microdots,” Nature,
vol. 399, no. 6736, pp. 533–534, 1999.

[9] R. Deaton, M. Garzon, R.C. Murphy, J.A.
Rose, D.R. Franceschetti, and S.E. Stevens, Jr.,
“Reliability and efficiency of a DNA-based
computation,” Phys. Rev. Lett., vol. 80, no. 2,
pp. 417–420, Jan. 1998.

[10] R. Deaton, M. Garzon, J.A. Rose, D.R.
Franceschetti, and S.E. Stevens, Jr., “DNA
computing: A review,” Fundamenta
Informaticae, vol. 35, no. 1–4, pp. 231–245,
1998.

[11] A.G. Frutos, Q. Liu, A.J. Thiel, A.M.W.
Sanner, A.E. Condon, L.M. Smith, and R.M.
Corn, “Demonstration of a word design strategy
for DNA computing on surfaces,” Nucleic Acids
Res., vol. 25, no. 23, pp. 4748–4757, 1997.

[12] M. Garzon, R. Deaton, P.D. Neathery, R.C.
Murphy, S.E. Stevens, and R. Franceschetti, “A
new metric for DNA computing,” in Proc.
Genetic Programming 1997, pp. 479–490.

[13] F. Guarnieri, M. Fliss, and C. Bancroft,
“Making DNA add,” Science, vol. 273,
no. 5272, pp. 220–223, 1996.

[14] A.J. Hartemink, D.K. Gifford, and J. Khodor,
“Automated constraint-based nucleotide
sequence selection for DNA computation,”
BioSystems, vol. 52, no. 1–3, pp. 227–235,
1999.

[15] S. Ji, “The cell as the smallest DNA-based
molecular computer,” BioSystems, vol. 52, no.
2, 1–3pp. 123–133, 1999.

[16] L. Kari, “DNA computing—The arrival of
biological mathematics,” The Mathematical
Intelligencer, vol. 19, no. 2, pp. 9–22, 1997.

[17] L. Kari, S. Konstantinidis, E. Losseva, and G.
Wozniak, “Sticky-free and overhang-free DNA
languages,” Acta Informatica, vol. 40, no. 2,
pp. 119–157, 2003.

[18] B. Mishra, “Comparing genomes,”
Computing Sci. Eng., vol. 4, no. 1, pp. 42–49,
2002.

[19] S.-J. Park, T.A. Taton, and C.A. Mirkin,
“Array-based electrical detection of DNA using
nanoparticle probes,” Science, vol. 295, no.
5559, pp. 1503–1506, 2002.

[20] G. Paun, G. Rozenberg, and A. Salomaa,
DNA Computing. New Computing Paradigms.
New York: Springer-Verlag, 1998.

[21] N. Peyret, P.A. Seneviratne, H.T. Allawi, and
J. SantaLucia, Jr., “Nearest-neighbor thermo-
dynamics and NMR of DNA sequences with
internal A-A, C-C, G-G, and T-T mismatches,”
Biochemistry, vol. 38, no. 12, pp. 3468–3477,
1999.

[22] J.H. Reif and T.H. LaBean, “Computa-
tionally inspired biotechnologies: Improved

IEEE SIGNAL PROCESSING MAGAZINE106 SEPTEMBER 2004

DNA synthesis and associative search using
error-correcting codes and vector-quanti-
zation,” Revised Papers from the 6th Int.
Workshop on DNA-Based Computers: DNA
Computing, Lecture Notes in Computer Science,
vol. 2054. Berlin: Springer-Verlag, 2001, pp.
145–172.

[23] J.H. Reif, “DNA lattices: A programmable
method for molecular scale patterning and
computation,” Comput. Scientific Eng.
(Special Issue on Bio-Computation), no. 1, pp.
32–41, Feb. 2002.

[24] J.H. Reif, “The emergence of the discipline of
biomolecular computation in the US,” New Gener.
Comput., vol. 20, no. 3, pp. 217–236, 2002.

[25] J.H. Reif, T.H. LaBean, M. Pirrung, V. Rana,
B. Guo, K. Kingsford, and G. Wickham,
“Experimental construction of very large scale
DNA databases with associative search capabili-
ty,” in Proc. 7th Int. Meeting DNA Based
Computers, Tampa, FL, 2001, pp. 231–247.

[26] S. Roweis, E. Winfree, R. Burgoyne, N.
Chelyapov, M. Goodman, P. Rothemund, and L.
Adleman, “A sticker based architecture for DNA
computation,” in Proc. 2nd Annu. Workshop
DNA Computing, Princeton, NJ, 1999, pp. 1–29.

[27] A.J. Ruben, S.J. Freeland, and L. Landweber,
“PUNCH: An evolutionary algorithm for opti-
mizing bit set selection,” in Revised Papers from
the 7th International Workshop on DNA-Based
Computers: DNA Computing, Lecture Notes in
Computer Science. London: Springer-Verlag,
2001, pp. 150–160.

[28] J.P. Klein, T.H. Leete and H. Rubin, “A
biomolecular implementation of logically
reversible computation with minimal energy
dissipation,” BioSyst., vol. 52, issue 1–3, pp.
15–23, 1999.

[29] J. SantaLucia, Jr., “A unified view of polymer,
dumbbell, and oligonucleotide DNA nearest—
Neighbor thermodynamics,” Proc. Nat. Acad.
Sci.,USA, vol. 95, no. 4, pp. 1460–1465, 1998.

[30] N.C. Seeman, “DNA in a material world,”
Nature, vol. 421, no. 6921, pp. 427–431, 2003.

[31] M.N. Stojanovic and D. Stefanovic,
“Deoxyribozyme-based half-adder,” J. Amer.
Chem. Soc., vol. 125, no. 22, pp. 6673–6676,
2003.

[32] M.N. Stojanovic and D. Stefanovic, “A
deoxyribozyme-based molecular automaton,”
Nature Biotechnology, vol. 21, no. 9, pp.
1069–1074, 2003.

[33] F. Tanaka, M. Nakatsugawa, M. Yamamoto, T.
Shiba, and A. Ohuchi, “Developing support sys-
tem for sequence design in DNA computing,” in
in Revised Papers from the 7th International
Workshop on DNA-Based Computers: DNA
Computing, Lecture Notes in Computer Science.
London: Springer-Verlag, 2001, pp. 129–137.

[34] D. Tulpan, H. Hoos, and A. Condon,
“Stochastic local search algorithms for DNA
word design,” in in Revised Papers from the 8th
International Workshop on DNA-Based
Computers: DNA Computing, Lecture Notes in
Computer Science. London: Springer-Verlag,
2003, pp. 229–241.

[35] B. Yurke, A.P. Miller, and S.L. Cheng, “DNA
implementation of addition in which the input
strands are separate from the operator strands,”
BioSystems, vol. 52, no. 1–3, pp. 165–174,
1999.

[36] B. Yurke, A.J. Turberfield, A.P. Mills, Jr., F.C.
Simmel, and J.L. Neumann, “A DNA-fuelled
molecular machine made of DNA,” Nature,
vol. 406, no. 6796, pp. 605–608, 2000.

[37] J.D. Watson, T.A. Baker, S.P. Bell, A. Gann,
M. Levine and R. Losick, Molecular Biology of
the Gene, 5th ed. San Francisco, CA:
Pearson/Benjamin Cummings, 2004.

[38] E. Winfree, X. Yang, and N.C. Seeman,
“Universal computation via self-assembly of
DNA: Some theory and experiments,” in 2nd
Annu. DIMACS Meeting DNA Based
Computers, 1996, pp. 191–213.

[39] M. Zuker, “Mfold web server for nucleic acid
folding and hybridization prediction,” Nucleic
Acids Res., vol. 31, no. 13, pp. 3406–3415, 2003.

Sotirios A. Tsaftaris, Aggelos K.
Katsaggelos, and Thrasyvoulos N.
Pappas are with the Department of
Electrical and Computer Engi-
neering, Northwestern University.
Eleftherios T. Papoutsakis is with the
Department of Chemical Engin-
eering, Northwestern University.

[1] B.P. Bogert, M.J.R. Healy, and J.W. Tukey,
“The quefrency alanysis of time series for
echoes: Cepstrum, pseudo-autocovariance,
cross-cepstrum, and saphe cracking,” in Time
Series Analysis, M. Rosenblatt, Ed., 1963, ch.
15,pp. 209–243.

[2] A.V. Oppenheim, “Superposition in a class of
nonlinear systems,” Ph.D. dissertation, MIT,
May, 1964.

[3] J.W. Cooley and J.W. Tukey, “An algorithm for
the machine computation of complex Fourier
series,” Math. Computation, vol. 19, pp.
297–301, Apr. 1965.

[4] A.M. Noll, “Short-time spectrum and ‘cep-
strum’ techniques for vocal-pitch detection,” J.
Acoust. Soc. Amer., vol. 36, no. 2, pp. 296–302,
Feb. 1964.

[5] A.M. Noll, “Cepstrum pitch determination,” J.
Acoust. Soc. Amer., vol. 41, no. 2, pp. 293–309,
Feb. 1967.

[6] R.W. Schafer, “Echo removal by discrete gener-
alized linear filtering,” Ph.D. dissertation, MIT,
Jan. 1968.

[7] A.V. Oppenheim, R.W. Schafer, and T.G.
Stockham, Jr., “Nonlinear filtering of multi-
plied and convolved signals,” Proc. IEEE, vol.
56, no. 8, pp. 1264–1291, Aug. 1968.

[8] A.V. Oppenheim and R.W. Schafer, Digital
Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1975.

[9] A.V. Oppenheim and T.G. Stockham Jr.,
“Signal compression and expansion system,”
U.S. Patent 3 518 578, June 1970.

[10] T.G. Stockham, Jr., “Image processing in the
context of a visual model,” Proc. IEEE, vol. 60,
pp. 828–842, July 1972.

[11] T.G. Stockham, Jr., T.M. Cannon, and R.B.
Ingebretsen, “Blind deconvolution through
digital signal processing,” Proc. IEEE, vol. 63,
pp. 678–692, Apr. 1975.

[12] S.B. Davis and P. Mermelstein, “Comparison
of parametric representations for monosyllabic
word recognition in continuously spoken sen-
tences,” IEEE Trans. Acoust., Speech, Signal

Processing, vol. ASSP-28, no. 4, pp. 357–366,
Aug. 1980.

[13] T.J. Ulrych, “Application of homomorphic
deconvolution to seismology,” Geophysics,
vol. 36, no. 4, pp. 650–660, Aug. 1971.

[14] P.L. Stoffa, P. Buhl, and G.M. Bryan, “The
application of homomorphic deconvolution to
shallow-water marine seismology–Part I:
Models; Part II: Real data,” Geophysics, vol. 39,
pp. 401–426, Aug. 1974.

[15] K. Steiglitz and B. Dickinson, “Computation
of the complex cepstrum by factorization of the
Z-transform,” in Proc. Int. Conf. Acoust., Speech
and Signal Processing, 1977, pp. 723–726.

[16] G.A. Sitton, C.S. Burrus, J.W. Fox, S. Treitel,
“Factoring very high-degree polynomials,”
IEEE Signal Processing Mag., vol. 20, no. 6, pp.
27–42, Nov. 2003.

For an extensive bibliography, see
http://www.rle.mit.edu/dspg/pub
_journal.html.

dsp history continued from page 99

References

life sciences continued

	footer1:

