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Abstract. Magnetic Resonance (MR) protocols use several sequences
to evaluate pathology and organ status. Yet, despite recent advances,
the analysis of each sequence’s images (modality hereafter) is treated in
isolation. We propose a method suitable for multimodal and multi-input
learning and analysis, that disentangles anatomical and imaging factors,
and combines anatomical content across the modalities to extract more
accurate segmentation masks. Mis-registrations between the inputs are
handled with a Spatial Transformer Network, which non-linearly aligns
the (now intensity-invariant) anatomical factors. We demonstrate ap-
plications in Late Gadolinium Enhanced (LGE) and cine MRI segmen-
tation. We show that multi-input outperforms single-input models, and
that we can train a (semi-supervised) model with few (or no) annotations
for one of the modalities. Code will be released upon acceptance.
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1 Introduction

MR is non-invasive and offers high soft-tissue contrast suitable for numerous
applications. Multiple sequences are used in a single MR session, producing im-
ages of different contrast (modalities), that are characterised by disparities in
overall image quality and signal-to-noise ratio, but also provide complementary
information of anatomy and function. Developing methods to automatically seg-
ment tissue from such multimodal data remains important: for example in car-
diac MR, cine and LGE needs to be jointly assessed to characterise myocardial
infarction [11], since cine contains high anatomical information, whereas LGE
focuses on nulling myocardial signal to detect hyper-intense infarct zones.

To this date, processing of such multimodal data treats each modality in
isolation. Yet, jointly considering different modalities should be beneficial to
obtain information from another modality that better captures anatomy (see
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anatomical representations

cine-MR

Fig. 1. Cine-MR and LGE images with corresponding anatomical factors. Common and
unique information is marked with green and red boxes. Low tissue contrast (myocar-
dial nulling) in LGE leads to poor separation in distinct channels between myocardium
and surrounding tissues (e.g. ventricle). This can be corrected using the cine anatomy.

Fig. 1 for a motivating example). Herein, we offer a step change: we propose
a model designed to overcome challenges presented by multimodal analysis in
cardiac MR solving the core problems of representation learning, cross-modal
registration, information fusion and segmentation all in a joint end-to-end fashion
in a semi-supervised setting, without requiring exhaustive annotations.

Deep learning has been successfully used for automating segmentation, how-
ever, most methods in the heart focus on single modalities. This is mainly be-
cause of the high variability observed in signal intensity patterns across different
MR modality data and organ characteristics. While, in the brain, multimodal
images are commonly used together [6], in the heart, multi-input processing and
multimodal learning are substantially challenging due to inherent spatiotem-
poral and signal intensity differences (between modalities). These compromise
learning direct pixel-to-pixel correspondences.

We address the above difficulties, for the first time, with disentangled rep-
resentations, i.e. mappings from multimodal images to corresponding anatom-
ical and imaging factors. Anatomical factors contain structure (multi-channel
binary maps); imaging factors contain input signal intensity characteristics. A
Spatial Transformer Network (STN) [9] co-registers the corresponding (intensity-
invariant) anatomical factors, avoiding the co-registration in image space (diffi-
cult in cardiac and other soft-tissue organs). We then combine (fuse) the aligned
anatomical factors to find complementary features useful for segmentation.
Contributions: (1) Multimodal learning based on disentangled representations,
that combines information present in different modalities without the explicit re-
quirement for registered image pairs. (2) An application in cardiac segmentation,
in which we improve on the segmentation accuracy of single-input (unimodal)
models. (3) Semi-supervised learning: when few (or no) labels are available, we
transfer information from the other modality and use reconstruction costs.

2 Related work

Disentangled representations: Decomposing the feature space into spatial
and style-like factors has shown success in computer vision [7, 13], and recently
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in semi-supervised cardiac segmentation [2] and multimodal registration [17]. In
medical imaging, disentangled representations have more stringent requirements,
since the anatomical factors must have semantic and quantifiable meaning (e.g.
be useful for segmentation). Our proposed method thus differs significantly from
related multimodal methods; it strives for anatomical factors to be semantic and
geometrically consistent across modalities, as well as maintain the image dimen-
sions to allow a direct mapping to segmentations. These properties are essential
for anatomical registration and fusion, as well as semi-supervised learning.
Multiple inputs in cardiac: Level sets have been applied for cine-MR and
LGE segmentation given shape constraints, generated by convolutional networks
[14]. In [8], unannotated data were translated into a modality with annotations
using “style transfer”. However, this relies on learning good pixel-wise trans-
formations, which is not always possible [23]. Also the lack of an explicit fu-
sion mechanism may be problematic when images exhibit low contrast-to-noise
between different organs. Non-deep learning approaches include multimodal at-
lases [25], whereas simultaneous segmentation and registration of multimodal
cardiac MR images has been proposed with Multivariate Mixture Models [24].
Multimodal learning: In medical imaging, e.g. brain MRI, most multimodal
approaches assume perfect alignment between the inputs. Many methods have
been proposed for synthesis [10], and segmentation, for example with concate-
nated multi-channel inputs [5, 6]. To aid the learning process, in [20] they use
cross-modal convolutions and convolutional LSTMs, whereas in [4] they propose
densely connected streams (one per modality) to fuse high and low level features.
One approach to handle unregistered multimodal data is to treat them sep-
arately and share parts of single-input models. An empirical study of different
sharing options [22] concluded that a common feature space connected with indi-
vidual encoders and decoders has the best performance. Small mis-registrations
have been previously handled with an affine STN [10]. Our method is able to
fuse multimodal information, and differently from [10], uses a non-linear STN.

3 Proposed approach

Multimodal Spatial Decomposition Network (MMSDNet) consists of multiple
components (see Fig. 2), described in Sec. 3.1 and 3.2. At inference time, MMS-
DNet can take as input a 2D image (of either modality) or two images (of differ-
ent modalities) simultaneously. One encoder per modality extracts anatomical
factors, which are used for segmentation or input reconstruction. If multimodal
image pairs are available, anatomical factors are aligned by a STN, and combined
to produce a fused anatomy, which is used for the final segmentation mask.

3.1 Model

Encoding: Assuming two input modalities, and image samples z; (of height
H and width W), where ¢ € {1,2}, the anatomy factor is derived from an
encoder funatomy With parameters 6;: s; = fonatomy(%:|0;). Anatomy encoders
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Fig. 2. MMSDNet components. Top left: anatomy encoders (one per modality) extract
anatomical factors from images. Top right: misalignments are corrected with a STN;
aligned factors are then fused to produce one factor. Bottom left: imaging factors
are extracted by a modality encoder. Bottom right: the anatomical factor produces a
segmentation; anatomical and imaging factors together reconstruct an image.

are fully convolutional networks (architecture is shown in Fig. 3), which output
s; € {0,1}xWx8 "5 one-hot encoding (in the channel dimension), 8-channel
binary feature map of the same spatial dimension as the input (each channel
represents a different anatomical area). These two restrictions encourage a se-
mantic representation, since each tissue will be present only in one channel. They
also disentangle anatomy from imaging, since a binary image does not encode
any modality information in gray levels.
Alignment: The two anatomical factors are aligned using a Spatial Trans-
former Network (STN) [9] (architecture is shown in Fig. 3), which, through
non-rigid registration, generates two deformed anatomies s7/ "™ = stn(sq, s5)
nd sieformed — gin(sy,s1). The STN learns a matrix of 5 x 5 control points
that define the displacement field, which registers the second to the first anatom-
ical factor. Thin plate spline [1] is applied to interpolate the surface that passes
through each control point.
Fusion: The deformed anatomy s is an approximation of the anatomy
so corresponding to image xs. Thus, it can be fused with sy to produce a single
representation of x5 that preserves the encoded multimodal anatomical features.
We require the union of the aligned features, and thus use the pixel-wise max:
fused __ deformed . fused .
s1 = max(s] s2). Accordingly, s3 is also generated.
Segmentatlon. The previous steps produce six anatomical factors, namely si,
deformed _deformed  fused fused . .
52, 81 , 89 , 51 and s5°°°, which are used as input (one at a
time) to a convolutional network h(.) (architecture is shown in Fig. 3) to obtain
the final segmentation masks. Depending on the inference task, we can get a
segmentation using the appropriate anatomy, as also demonstrated in Sec. 4. If
only x; is available, the segmentation is obtained from s;, whereas if both x1, zo
are available the fused anatomy sf used produces the most accurate result.

deformed .

3.2 Additional networks and losses

Our end-to-end strategy enables the model to learn from multimodal data to
separate anatomy from imaging characteristics, whilst doing good segmenta-
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Fig. 3. Architectures of the MMSDNet components. Top left: the anatomy encoder fol-
lows a U-Net [18] architecture and maps an image to an anatomical factor s. Downsam-
pling and upsampling are performed with max pooling and nearest neighbour interpo-
lation respectively. Bottom left: the segmentation network is a small fully convolutional
network that given s, produces a segmentation mask. Top right: the spatial transformer
network consists of three convolutional and one fully connected layers and predicts the
interpolation parameters used to register s; to s2. Middle right: the modality encoder is
a convolutional network that predicts the modality factor z. Bottom right: the decoder
is a convolutional network that modulates an anatomy factor s with a modality factor
z to generate an image.

tion, registration and reconstruction. Critically, reconstruction enables semi-
supervised learning, aided via adversarial objectives on segmentation masks. Be-
low we detail the breakdown of the overall training loss, L = MLk + AoLgeg +
AsLady + MaLrec + AsL,... (The N's are set to 0.1, 10, 1, 10, 1 respectively.)

Lkr, and L, __: Given an image z;, from modality i, then a corresponding

Zrec*

anatomy s can either be the encoded s; = faonatomy(2i|0;), or the deformed
gdeformed and fused anatomies sf used if 2. has a paired slice x; in modality j.
Key is the disentanglement of the latent space into anatomical s; and imag-
ing factors z; (8-dimensional vector), which requires a modality encoder,
Zi = fmodality(Ti,s;), and a decoder. The decoder reconstructs the input,
Z; = g(s,z), using FILM [16], by modulating s with scaling and offset pa-
rameters § and ~y, that are learned from z;. The network architectures of both
the modality encoder and the decoder are shown in Fig. 3. The posterior dis-
tribution given the inputs ¢(z|x, s) is modelled after the Variational Autoen-
coder [12] to follow a Gaussian prior p(z) = AN(0,1), by minimising the KL-
divergence between ¢ and p: Lxr = Dgr(q(z|z,s)||p(z)). The representation
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Fig.4. Two segmentation examples from LGE+cine dataset. Each row shows a
paired cine-MR and LGE with their respective ground truth masks (mcine and
mrge); the MMSDNet predicted mask (myfuseqa); and finally, the absolute difference
of mrage with meine and Mmyyseqa respectively. Row-wise: Dice(meine, mrar)=0.51,
Dice(mfysed, mrar)=0.81, Dice(Mcine, mrce)=0.77, Dice(Mmfysed, mrcr)=0.89.

disentanglement is further encouraged by a z—reconstruction cost using the ¢4
loss: L,,,. = ||z — fmodality(Zi; fanatomy(€:]6:))|l1, where &; is produced by a z
that is sampled from the Gaussian prior.

Lyec: Image reconstruction between the input and synthetic image is trained with
Lyee = ZSE{Si,sjeformed7s‘_;'used} llz; — g(s,2;)|1. Essential for disentanglement is
the cross-reconstruction between modalities by properly mixing the anatomical
and modality factors. In addition, the reconstruction error is back-propagated
to the STN and provides the learning signal for aligning anatomical factors.
Lseg: When segmentation masks m;, corresponding to the input z;, are avail-
able, then a supervised cost is defined using differentiable Dice between real and
predicted masks: Lseq = Zse{si’sgefomedys;used} Dice(mg, h(s)).

Lagy: Finally, an unsupervised cost with least-squares adversarial loss [15] is
defined, L,q, = ZSE{Si’S?efo'rmed’sfused}[DM(h(S))2 + (Dar(m) — 1)%], using a
discriminator over masks Dj;. Here, the encoder fanatomy and segmentor h are
trained to minimise L4, adversarially against Dj; which maximises it.

4 Experiments and discussion

Data: We evaluate MMSDNet in LGE segmentation using a private dataset ac-
quired at Edinburgh Imaging Facility QMRI with image pairs of 28 patients from
cine-MR and LGE [19]. Myocardial contours are provided for the end diastolic
frame of the cine-MR and the LGE data. The spatial resolution is 1.562mm?
per pixel, and the slice thickness is 9mm. The dataset contains 358 expertly
paired cine-MR and LGE images and their corresponding segmentation masks.
The image resolution is 208 x 208 pixels.

Baselines: A lower-bound is obtained from the Dice between the real masks
of both modalities, referred as “copy masks”. This is repeated after affine im-
age registration using mutual information, followed by symmetric diffeomorphic
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using cross-correlation [21]. We also consider uni- and multi-modal single-input
U-Nets by mixing training data. The uni-modal UNet is trained only with the
LGE images (UNet-single), whereas the multi-modal UNet is trained with both
LGE and cine images (UNet-both). Finally, we compare with DualStream [22]
setup of two encoders and decoders, the most recent deep learning method for
unpaired multimodal segmentation.

Training and evaluation: We train, using data augmentations of rotation,
translation and scaling in Keras [3], with the Adam optimiser and a learning rate
of 0.0001. Results are produced by held-out test sets on 3-fold cross-validation,
where the training, validation and test sets are split using 70%, 15% and 15% of
the dataset subjects, respectively.

4.1 Multi-input vs. single-input segmentation

Initially, we test whether multiple inputs benefit LGE segmentation, compared to
single-input models. Two experimental scenarios are considered: LGE masks are
available during training or not. Table 1 compares the performance of MMSDNet
with the baselines and presents the mean test Dice score of Left Ventricle (LV)
and myocardium (MYO) segmentation, as well as their average.

Given fully annotated LGE data (100% column of Table 1), the highest Dice
is achieved when using multiple inputs at inference time (MMSDNet-multi),
confirming knowledge transfer from source to target modality. The effect of mul-
timodal registration is qualitatively demonstrated in Fig. 4, which shows the im-
provement achieved by MMSDNet compared with the cine segmentation. MMS-
DNet, which is trained with multiple inputs, outperforms a single-input U-Net,
even when at inference time the paired cine-MR image is not available (referred
to as MMSDNet-single in Table 1). Most importantly, when LGE masks are not
available during training, but only images (0% column of Table 1), the U-Net
and DualStream baselines fail to achieve accurate LGE segmentation since they
are only trained on cine-MR data. MMSDNet, with the use of its unsupervised
objectives, can still learn multimodal features and outperforms the registration
baseline. The achieved Dice scores are comparable with the ones reported in
related works [14, 24].

4.2 Segmentation with a varying number of annotations

Here we vary the amount of LGE annotations during training to demonstrate
the unique capabilities of semi-supervised learning in our approach. In this ex-
periment a fixed number of annotated cine-MR images is used, that is equal to
the number of LGE images at 100%. Qualitative testing set examples in Fig. 5
and Fig. 6, show the predictions of baseline and MMSDNet models with varying
amount of training data. Observe how our approach offers more consistency.
Table 1 reinforces these observations quantitatively on segmentation accuracy
for MMSDNet and various baselines. When the number of images is high (above
50%), all methods perform on par. However, as they decrease, the performance
of the baselines also decreases. MMSDNet though is consistent and maintains
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Table 1. Average myocardium and left ventricle test Dice results when training with a
varying amount of masks. Best results are underlined; * denotes statistical significance
at 0.05 compared to the best baseline. Number of cine-MR masks is always at 100%.

LGE masks: 100% 50% 25% 0%
MYO LV avg [ MYO LV avg MYO LV avg|MYO LV avg
Copy masks 5005 8log 676 | 5005 8log 6706| D005 8los 676 | D005 81los 6706
Registration 5108 8007 6807 5108 8007 6807 5108 8007 6807 5108 8007 6807
UNet-single 6607 8703 7804 6411 8313 7612 5110 7515 6614 - - -
UNet-both 6905 8945 81ys| 6410 840s 760s| 5609 7912 Tli0| 2717 4427 3823
DualStream 6501 8603 8006 6405 8404 7603 4808 6917 6113 2717 4427 3823
MMSDNet-single @02 8604 8004 6408 8110 7508 6107 8406 7506 5607 8304 7206
MMSDNet-multi 6903 89, 81y,| 65, 8504 T704| 6353 8754 7755] 5905 8453 T4g,

input LGE LGE mask UNet single UNet both DualStream MMSDNet-single MMSDNet-multi

100%

50%

25%

0%

Fig. 5. LGE segmentations when training with varying amounts of LGE annotations.

a good performance even when training with no LGE masks. The performance
of MMSDNet-multi is always higher than MMSDNet-single, suggesting that our
method can leverage information from cine-MR to improve segmentation.

5 Conclusion

We demonstrated multimodal segmentation using input images of different modal-
ities. We devise representation disentanglement to extract the individual anatom-
ical factors, and then use these factors to fuse common and unique information.
Our results show that accurate segmentation can be achieved when combining
multimodal images, even when no annotations of the target modality are avail-
able (during training). We used two MR modalities with expert pairing of the
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input LGE LGE mask UNet single UNet both DualStream MMSDNet-single MMSDNet-multi

100%

50%

25%

0%

Fig. 6. LGE segmentations when training with varying amounts of LGE annotations.
Observe that the baselines did not produce any segmentation mask when trained only
with cine-MR data, i.e. for the 0% case.

inputs. Our methodology can be extended for additional modalities, by adding
new encoders and by accordingly learning a pairing mechanism. Both are under
investigation, along with further applications in other organs.
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