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Abstract—In centralized transportation surveillance systems,
video is captured and compressed at low processing power remote
nodes and transmitted to a central location for processing. Such
compression can reduce the accuracy of centrally run automated
object tracking algorithms. In typical systems, the majority of
communications bandwidth is spent on encoding temporal pixel
variations such as acquisition noise or local changes to lighting.
We propose a tracking-aware, H.264-compliant compression
algorithm that removes temporal components of low tracking
interest and optimizes the quantization of frequency coefficients,
particularly those that most influence trackers, significantly re-
ducing bitrate while maintaining comparable tracking accuracy.
We utilize tracking accuracy as our compression criterion in lieu
of mean squared error metrics. Our proposed system is designed
with low processing power and memory requirements in mind,
and as such can be deployed on remote nodes. Using H.264/AVC
video coding and a commonly used state-of-the-art tracker we
show that our algorithm allows for over 90% bitrate savings
while maintaining comparable tracking accuracy.

Index Terms—Quantization, urban transportation video, video
compression, video object tracking, video processing.

I. Introduction

V IDEO imaging sensors are commonly used in trans-
portation monitoring and surveillance. Such sensors are

a cost effective solution that yields information on a large
field of view, allowing for real time monitoring of video
feeds and video archiving for forensic, surveillance and traffic
analysis applications. Other vehicular monitoring solutions,
such as embedded inductor cables or radars, can only identify
and count vehicles and measure instantaneous speed without
providing any further information. Video imaging is the only
existing modality that observes a vehicle’s complete trajectory,
opening the door to a completely different set of applications
[1]. Possible applications include the remote surveillance of
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transportation hubs, automatic detection of anomalies, and
study of transportation phenomena such as driver behavior and
its possible effects on safety and congestion [2]–[4].

In order to limit infrastructure costs associated with their
deployment, most video imaging solutions require the trans-
mission of the video to a centralized location for viewing,
(automated) analysis, and/or archiving. Remote nodes are
deployed solely for the purpose of video capture and trans-
mission; such nodes require no hardware other than cameras,
low-cost consumer-grade embedded systems and a network
connection.

This centralized approach mandates the compression of
video before it is transmitted. Transmitting high-quality video
requires expensive wired communication links, while relying
on lower cost wireless links requires heavy compression and
results in reduced video quality. Most video compression
systems use block-based motion compensation [5], where
temporal redundancy is eliminated via the use of block mo-
tion vectors and frequency-transformed residuals. For typical
transportation surveillance the camera is stationary, and the
majority of bitrate is spent representing temporal changes to
the scene due primarily to acquisition noise or small changes
to lighting.

There exist several specialized encoders addressing surveil-
lance applications [6]–[10]. However, there has been an in-
creasing interest in identifying video compression solutions
that can further reduce the required bitrate without violating
standard compliance or increasing encoder complexity.

Within the scope of remaining standard-compliant, reducing
bitrate and increasing video quality, a number of approaches
have been suggested to reduce noise as much possible [11]
or to take into account the fact that the camera is stationary.
Alternatively, methods such as suggested in [12] focus on
consolidating processing power on critical visual elements by
their motion type. In [13], an approach was proposed that
adds higher level elements such as motion field correction
filtering in the context of H.263. In [14], a method of using
automatic resizing of ROIs detected by video encoder motion
estimation in conjunction with object tracking is presented;
for this algorithm an effective ROI estimate requires encoder
motion estimation capturing true motion. In [15], a method
of using ROIs to focus limited processing power on highest
gain encoder components in the context of H.264/AVC is
presented. These methods are all low in complexity, but rely on
information generated by the encoder (such as motion vectors
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or macroblock types) to limit computation. Results for such
algorithms rely on assumed encoder behavior, and for example
will suffer in cases where a “best block match” motion field,
which reduces block residual energy without actually reflecting
true motion, is used.

The above algorithms do not perform application-specific
compression, i.e., they do not take into account the possible
data analysis that will be applied to the compressed video. As a
result of such compression the tracking accuracy and efficiency
can be severely affected, necessitating the development of new
methodologies taking compression distortion into account (one
example of such an approach is presented in [16]).

The design of a standard-compliant low-complexity encoder
tailored to tracking applications, and to this end using tracking
accuracy rather than peak signal-to-noise ratio (PSNR) as a
compression performance metric, had not been considered
until [17]. Therein, it was proposed that subjective tracking
accuracy is better suited to judge system performance and
(assuming a static background) an automated low-complexity
ROI detection algorithm for bitrate consolidation was offered.
Indeed, as Fig. 1 illustrates, one type of compression distortion
may be significantly more misleading for a tracker compared
to a second one. Note that with respect to Fig. 1(a), both
the smoothing distortion shown in Fig. 1(b) and the blocking
artifacts shown in Fig. 1(c) have the same PSNR.

In this paper, we present a combined set of algorithms to
allow compression resources to be focused on video elements
of tracking interest. The algorithms presented herein are de-
signed to be low in complexity and to be readily deployable
as a simple modular add-on to low processing power remote
nodes of centralized transportation video systems. They make
no assumptions about the operation of the video encoder (such
as its motion estimation or rate control methods) and are
thus suitable for use in a variety of systems. The resulting
bitstreams are standard-compliant, thereby guaranteeing inter-
operability with other systems. Early versions of some of the
algorithms proposed herein are covered in [18] and [19].

The rest of this paper is organized as follows. In Section
II, we outline our proposed system. In Section III, we present
our framework for measuring automated tracker efficiency. In
Section IV, we propose a method for bitrate concentration on
critical temporal changes to video. In Section V, we propose a
method of quantization table optimization tailored to tracking
applications. In Section VI, we discuss details pertaining to
the joint implementation of the two algorithms, and in Section
VII we show experimental results. Finally, in Section VIII we
present concluding remarks.

II. Proposed System

We propose a system using application-specific video com-
pression to minimize the bandwidth requirement for links
connecting central and remote nodes. This is done by mini-
mizing bits spent coding components of low tracking interest,
specifically: 1) temporal pixel variations such as local changes
to illumination which are not useful to trackers in general,
and 2) frequency components that are less valuable to the
specific tracker being used. While 1) is achieved in real-time

Fig. 1. Example of distortions with same PSNR. (a) Original. (b) Smoothing
distortion. (c) Blocking artifacts. With respect to (a), both (b) and (c) have a
PSNR of 34.7 dB.

Fig. 2. Proposed runtime system.

by estimating pixel-level statistics in input video and filtering
out small pixel-level fluctuations (details presented in Section
IV), 2) is achieved by optimizing a quantization table specific
to the automated tracker used (details presented in Section
V). This allows us to affect implicitly rate-distortion level
decisions without requiring the presence of a tracker at the
encoder.

Fig. 2 shows the proposed runtime system. At the remote
(camera) node, video components considered to be noise are
estimated and suppressed prior to compression, where an
optimized quantization table (QT) may be used to further focus
bit allocation on elements of tracking interest. The compressed
video and estimated noise parameters are transmitted to the
central node, where the video is decoded and noise synthesized
as per the remote node estimated parameters is inserted prior
to tracking. This system can be deployed in a multitude of
scenarios (e.g., using low-cost wireless/cellular links), that
vary according to the available infrastructure. Section VII-C
discusses these scenarios in detail.

Hardware costs associated with processing requirements on
numerous remote nodes are minimized by keeping algorithmic
complexity low enough to run real-time on low-cost consumer-
grade processors. We assume that some processing power
exists at a central location equipped with automated trackers.
This processing power can be either utilized in an initialization
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phase or not at all. As such multiple combinations of the two
algorithms 1) and 2) exist, which are detailed in Section VI.

III. Measuring Automated Tracking Efficiency

The field of video object tracking is quite active, with var-
ious solutions offering strength/weakness combinations suit-
able for different applications. For urban transportation video
tracking, most applications involve a background subtraction
component for target acquisition such as the one developed in
[20], and an inter-frame object association component such
as those developed in [21] and [22]. Most such tracking
algorithms account only for the native statistics of video
objects, and as a result distortion of these statistics by sources
such as compression may severely degrade their accuracy.

In order to optimize tracking quality a metric to measure
tracking accuracy is required. In [23], a review of the state-of-
the-art for video surveillance performance metrics is presented.
While more complex metrics such as the ones presented in
[24] may be used, due to their pertinence to transportation
surveillance, we choose the overlap, precision, and sensitivity
metrics presented in [23], with the ground truth defined as
tracking results generated using uncompressed video.

Overlap (OLAP) is defined in terms of the ratio of the
intersection and union of frame pixels covered by ground truth
(GT ) and algorithm result (AR) object segmentations

OLAP = 1/N

N∑
i=1

(GTi ∩ ARi)/(GTi ∪ ARi) (1)

where GTi represents the ith object tracked in uncompressed
video, ARi the ith object tracked in compressed video, ∩ the
intersection of the two regions, and ∪ their union. Note here
that OLAP refers to an average over all N objects in a given
video sequence. Precision (PREC) is defined in terms of the
number of true positives (TPs) and false positives (FPs) in
the video sequence as

PREC = TP/(TP + FP). (2)

A true positive results from an object being present in both
the GT and AR (i.e., the tracked regions in the GT and AR

overlap). A false positive results from an object being present
in the AR but not in the GT , or if an object detected in the AR

does not overlap an equivalent object in the GT . Sensitivity
(SENS) is defined in terms of the number of TPs and false
negatives (FNs) in the video sequence as follows:

SENS = TP/(TP + FN). (3)

A false negative results from an object being present in the
GT but not in the AR, or if an object detected in the GT does
not overlap an equivalent object in the AR.

In order to jointly optimize for a combination of the above
metrics we define the aggregate tracking accuracy A as

A = (α ∗ OLAP) + (β ∗ PREC) + (γ ∗ SENS) (4)

where α, β, and γ are weighting coefficients. Given that
OLAP, SENS, and PREC are all in the range [0, 1], no
normalization of A is necessary as long as α + β + γ = 1.

IV. Tracking Aware Video Processing

At reasonable compression ratios frame-to-frame pixel in-
tensity variations, e.g., due to acquisition noise or local
changes in illumination, are usually imperfectly represented
in compressed video due to lossy coding. For example, such
variations may be sampled sparsely over time rather than at
every frame, leading to seemingly random block updates in the
decoded video. Such changes may be interpreted as significant
motion by an automated tracking system and thus be highly
misleading. The proposed algorithm seeks to suppress such
changes, thereby reducing both the required bitrate and post-
compression tracking inaccuracies.

Our algorithm, termed temporal deviation thresholding
(TDT), operates in two distinct parts: 1) we model, detect,
and remove temporal pixel variations of low tracking interest
as a preprocess to compression, and 2) after decoding the
video at the receiver we use the estimated noise parameters
from part 1) to synthesize and re-insert noise prior to tracking.
Part 1), referred to as TDT−, aims at minimizing the bitrate
requirement, while part 2), referred to as TDT+, aims at
improving post-compression tracking results. Details for the
algorithm are presented below.

For the remainder of this paper, scalars are defined ital-
icized, e.g., C, while vectors and matrices (2-D, 3-D) are
denoted by bold characters, e.g., Mt . We define temporal
variations of pixel intensity of low tracking interest as noise.
This noise is modeled for each frame Vt as a Gaussian process
with zero mean and standard deviation σt . We assume that
for transportation surveillance video obtained from a static
camera, the majority of pixels undergo temporal variation
due to noise. Thus, the majority of the frame is comprised
of a static background, whose variation in the video will
be predominantly due to effects such as acquisition noise
(assumed to be Gaussian) and illumination changes rather than
to actual motion.

We denote by Dt the per-pixel standard deviation at time
t over the past B buffered frames. We expect the majority
of the non-zero values of Dt to be due to noise. Therefore
similarly to [25], we estimate the noise standard deviation σt

by finding the mode of the distribution of the Dt values. The
goal is to generate a mask Mt , a bitmap of pixels in frame Vt

whose variation is of tracking interest. The filtered frame V̂t

is iteratively computed as follows:

Dt = std([Vt−B, ..., Vt]) (5)

σt = mode( vec(Dt) ) (6)

�t = |Vt − Vt−1| (7)

Mt = �t > C ∗ σt (8)

V̂t = Mt ∗ Vt + Mt ∗ V̂t−1 ∀ t ≥ B . (9)

In (5), std denotes the per-pixel standard deviation operator.
In (6), mode and vec denote, respectively, the histogram mode
and matrix vectorization operations. In (7), || denotes the per
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Fig. 3. Sample estimation process for σt at t = 18 of the Golf sequence.
Here shown are (a) Dt , (b) �t , (c) Mt , and (d) V̂t .

matrix entry absolute value operation. In (8), Mt is a logical
bitmap and Mt its logical inverse. Equation (9) describes the
iterative operation, where only pixels in Vt corresponding to
values of 1 in the bitmap Mt are updated in V̂t .

The process is initialized by setting V̂t = Vt , ∀ t < B, i.e.,
no frames are processed until B frames have been buffered.
Refer to Fig. 3 for a sample iteration of the process described
in (5)–(9). Note that in the figure the video encoder receives
only the filtered input V̂t .

The derivation of the coefficient C is done based on the
desired confidence interval CI. Since we model noise as
Gaussian, its distribution is subject to the cumulative Gaussian
distribution function �. Refer to [26] for further discussion
on the derivation and use of � in this context. Using �,
we express the probability of any given pixel variation being
due to noise as the probability that it belongs to a zero-mean
Gaussian distribution with standard deviation σt

CI = Prob(|�t| < C ∗ σt) = �(C) − �(−C). (10)

As described above, for TDT+ synthetic noise is reinserted
into the decompressed video as part of our algorithm. For
each frame Vt , the noise parameter σt estimated at the remote
node is transmitted along with the compressed video frame.
At the receiver randomly generated Gaussian noise with zero
mean and standard deviation σt is added to the frame, clipping
any resulting overflows due to 8-bit pixel precision. The goal
of this process is to restore the Gaussian temporal noise
characteristics the video possessed prior to compression. Given
that many tracking algorithms rely on noise modeling for
background subtraction, this step is critical to allow such
trackers to be able to distinguish actual foreground (such as
vehicles) from pixel variations introduced by compression. In
addition, without adding noise (TDT+), any noise that was not
suppressed during TDT− is very likely to be misinterpreted
as true motion by a tracker. Observe in Fig. 4 that due to
these reasons, the tracking performance of using only TDT−

is relatively low for all bitrates, while using full TDT (both
TDT− and TDT+) yields very significant gain.

For video with multiple color components, TDT is applied
independently to each component. While joint application

Fig. 4. Performance gain achieved by adding noise at the receiver (TDT+)
before tracking versus using TDT− video for tracking.

to multiple components may improve the robustness of the
algorithm, special care should be taken in this case for low-
contrast scenes (such as in low-light or fog) presenting a
disadvantageous tradeoff between sensitivity and precision.

TDT adds no latency to the system, and the resulting
bitstream is fully standard-compliant. Note that the core algo-
rithm (7)–(9) requires only an estimate of the noise standard
deviation, which we estimate using (5) and (6), although other
possible spatial estimations of noise variance are possible.
The parameters for the algorithm are the buffer size B, which
should be set as high as possible given memory and processing
constraints, and the confidence interval CI, which should be
set based on specific application requirements in terms of
tracking accuracy.

V. Iterative Quantization Table Search

In this section, we propose an iterative greedy search
algorithm which automatically identifies and concentrates bit
allocation to frequencies useful to tracking. During each
iteration, the encoder quantization scheme of each individual
frequency is modified, and tracking accuracy is measured for
a sample clip of the video. From these results, only those
frequencies which provide the highest tradeoff of bits for
tracking accuracy are kept, and subsequent iterations proceed
cumulatively. This algorithm aims to make encoder quantiza-
tion decisions based on tracking accuracy as opposed to the
traditional rate-distortion method.

The quantization scheme is varied by the algorithm via the
QT specified as part of the sequence and picture parameter
set structures in the H.264/AVC video compression standard
[27]. Each entry of the QT partially defines quantization of
a coefficient resulting from the 4 × 4 spatial transform—the
goal is to spend the fewest bits on coefficients containing the
least useful information pertaining to features utilized by the
tracker. This allows us to implicitly affect rate-distortion level
decisions without requiring a tracker on the encoder. The end
result of this algorithm is a QT lookup table (QT-LUT), which
is formed of an array of bitrates and corresponding optimized
quantization parameter (QP) and QT pairs for each bitrate.
Details for the algorithm are presented below.
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The quantization of the jth transform coefficient in terms
of the QP q and QT is described as

QT = [φ0, φ1, φ2, ..., φ15] (11)

quantj = q ∗ φj/16 (12)

where each 8-bit φj corresponds to a rasterized 4 × 4
H.264/AVC residual transform coefficient (e.g., φ0 operates
on position [1, 1] and φ15 on position [4, 4]). Therefore 28·16

distinct QTs are possible. We define τ, a simplified binary
QT where each φj can only have values of either 16 or 255,
thereby limiting our optimization search space to 216 values.
The two options (16 or 255) lead to, respectively, using q

directly or quantizing coarsely enough to effectively suppress
the coefficient. We define τ as follows:

τ =
15∑
j=0

2j ∗ Pj where Pj =

{
1, if φj = 16
0, if φj = 255.

(13)

For example, τ = 216 − 1 (all bit positions equal to 1) would
indicate the use of a “flat” quantization table, whereas τ = 1
(all bit positions but the zeroth equal to 0) would indicate a
DC-only QT. We define the mapping operation of compression
and tracking fenc as follows:

{R, A} fenc← {V, q, τ} (14)

where R is the resulting compressed bitrate and A the tracking
accuracy for the video sequence V compressed using q and
τ. We define a “data point” as associated to {R, A, q, τ}, and
denote as {R, A, q, τ} a collection (in vectors) of concatenated
data points. We define the function fopt isolating the iteration-
optimal data points {R∗, A∗, q∗, τ∗} as follows:

{R∗, A∗, q∗, τ∗} = fopt(R, A, q, τ). (15)

fopt operates by starting with the lowest bitrate R data point
available, and adding all other data points of monotonically
increasing tracking accuracy A. Finally, we define the function
fbranch, which generates the QT modifications necessary for the
search iterations, as

τn = fbranch(τ∗
n−1) (16)

where for every element τ in the input vector τ∗
n−1 (size L×1)

an output vector τn, which is formed of the concatenation of
all 32 possible bit permutations (i.e., of size 32 · L × 1), is
generated. We initialize our QT search as

qo = [QP1, QP2, ..., QPM] (17a)

τflat = 216 − 1 (17b)

τo = [τflat, τflat, ..., τflat] (17c)

{Ro, Ao} fenc← {V, qo, τo} (17d)

{R∗
o, A∗

o, q∗
o, τ

∗
o} = fopt(Ro, Ao, qo, τo). (17e)

A range of M QPs, each with a corresponding flat QT τflat

(i.e., where τo is of size M × 1), are evaluated. We define

search iterations n > 0 as follows:

qn = q∗
n−1 (18a)

τn = fbranch(τ∗
n−1) (18b)

{Rn, An} fenc← {V, qn, τn} (18c)

{R∗
n, A∗

n, q∗
n, τ

∗
n} = fopt(Rn, An, qn, τn). (18d)

The algorithm converges when {R∗
n, A∗

n} = {R∗
n−1, A∗

n−1}.
Briefly explained, the core algorithm operates as follows:

we initialize by encoding the sample video using a range of
QPs and a flat QT (all entries = 16) as shown in (17). The
iteration-optimal points are identified as the data point with
the lowest bitrate R and those points with tracking accuracy A

monotonically increasing from this point. To generate the data
points for each iteration, each of the coefficients for every QT
from the previous set of iteration-optimal data points is then
set to 16 and 255 as per (16). We then proceed as per (18)
by evaluating each data point (i.e., compressing the sample
video using the QT being evaluated and tracking using the
decompressed output) and afterwards finding those that are
iteration-optimal among them.

Observe that given the operation of fopt this algorithm uses
a greedy search—only iterative results showing improvement
(i.e., higher A for the same or lower R) are evaluated in sub-
sequent iterations. Note also that the QT search is performed
simultaneously across a range of q and τs. This is because
tracking is a nonlinear process subject to different sources of
distortion at different quantization levels—the cost and benefit
of each QT coefficient is dependent on the QP being used.
Also note that a single QT is used to code the entire video,
i.e., the QT is not a macroblock or frame-level variable.

The above process can be performed in multiple ways based
on the video input (compressed or uncompressed), its length,
and the available time. In a real-time implementation this
process will use only a few hundred input frames as discussed
in Sections VI-A and VI-B. On the other hand, it can be
completed offline over a range of input videos of greater length
as discussed in Section VI-C, yielding a global QT that does
not require any initialization delay to compute.

VI. Combined Implementation

The algorithms presented in Sections IV and V can each
be independently deployed. In order to combine the possible
bitrate reduction from using the two algorithms, we propose a
combined system using them in series. While the basic runtime
system (i.e., the part which is operational when the system is
online) is straightforward, multiple variations of the system
design can be obtained based on how the system is initialized
(i.e., which QT is used and how it is derived).

Fig. 2 shows the combined runtime system. Raw digital
video frames that are captured by the remote node (camera)
are first passed through TDT−, where the noise component is
estimated and suppressed. This filtered video is then passed
to the encoder, which can use a default “flat” QT or the
QT specified during initialization. The compressed video and
estimated noise parameter for each frame are transmitted to
central processing, where the video is decoded and noise
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synthesized per the estimation parameters is added back before
automated tracking proceeds (i.e., TDT+ is performed). Over-
all, there exist multiple options for the quantization scheme
used by the system, each having unique characteristics and
accommodating a multitude of limited resource scenarios and
applications such as follows:

1) default “flat” H.264/AVC quantization;
2) QT-LUT derived over a long initialization time, where

high bitrate video is transmitted to central processing as
described in Section VI-A;

3) QT-LUT derived over a short initialization time, where
low bitrate TDT− processed video is transmitted to
central processing as described in Section VI-B;

4) global QT-LUT derived offline, as described in Section
VI-C.

We consider TDT to be a key component of the system
because it reduces noise which affects tracking accuracy. As
such all QT-enabled scenarios assume the presence of TDT.
A QT search performed on unprocessed video will result
in an attempt to remove temporal noise in the frequency
domain, potentially attenuating high frequencies, introducing
smoothing and reducing the tracking accuracy of the final QTs.

A. Long Initialization Time System

The most aggressive method of QT initialization is possible
via the long initialization time (LIT) system, shown in Fig. 5,
which can initially require a long initialization delay and high
bandwidth. As described in the figure, during initialization the
LIT system encodes the captured sample video at a high bitrate
and transmits this bitstream at the channel rate. At the receiver,
after TDT processing is applied the reconstructed video is used
as a source video estimate, used for automated tracking to
generate a “ground truth” tracking baseline. This ground truth
is used to calculate the tracking accuracy A of each QT search
iteration. At the conclusion of initialization the final QT-LUT
resulting from the iterative search is sent via the uplink to the
remote node, which uses it for encoding during runtime until
the next initialization phase.

B. Short Initialization Time System

A less aggressive alternative is possible via the short ini-
tialization time (SIT) system. Here, TDT− is applied to the
sample video from the remote node prior to encoding, thereby
significantly reducing the required bitrate. The low bitrate
video and noise estimate are transmitted to central processing,
where noise synthesized per the estimate is added to the
decoded video. The iterative QT search is performed using
this noise-added video. The difference between SIT and LIT
is the video that is used to generate the “ground truth” tracking
baseline for the iterative QT search. For LIT, the high quality
compressed video is used, whereas for SIT the compressed
TDT video is used. The premise of SIT is that transferring
TDT video to central processing will be significantly faster
than transferring the original.

C. Global QT System

The least aggressive and easiest to deploy and operate
method of QT utilization is possible via the global QT

Fig. 5. LIT system initialization process.

(gQT) system. In the gQT scenario, a “tracker-focused scene-
agnostic” QT-LUT is generated offline using video from many
different scenes. This eliminates any need for a feedback loop
between the remote nodes and central processing and imposes
no system initialization delay. Note that for the gQT system
no additional complexity regarding QT searching is introduced
into the overall system—the gQT is computed offline and
built into the remote nodes during deployment. Here, the QT
search mechanism is similar to the central processing section
of the LIT system shown in Fig. 5. However, instead of a
single high bitrate video source captured from a remote node,
raw content previously acquired from various cameras with
different visibility conditions and viewing angles is used. In
order to implement gQT we modify the QT search described
in Section V by replacing (14) by

{R, A} fenc← {[V1, V2, ..., VK], q, τ} (19)

where instead of a single video sequence V a range of K

video sequences [V1, V2, ..., VK] are encoded and tracked,
and the average bitrate R and tracking accuracy A for all
sequences is reported. The rest of the algorithm as described
in (17) and (18) proceeds as normal using fenc, resulting in
a Global QT well suited for the variety of video sequences
being considered.

D. Complexity Analysis

Real-world implementations of our algorithms would need
to run real-time on low-cost remote nodes, such as consumer
grade embedded systems. The premise of our design is that



1384 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 10, OCTOBER 2011

the majority of additional resources required by our algorithms
reside on the central processing location, while any additions
to remote nodes are kept to a minimum.

Certain operations in our design, such as the mode operation
used in (6), can be considered processor-intensive for some
embedded systems. For our remote node system we consid-
ered low-cost consumer grade hardware such as the Texas
Instruments (TI) OMAP3 System-on-Chip platform referred
to in [28], which features a 520 MHz TI C64x DSP and
ARM Cortex-A8 video processing engine. We consider 25%
processor loading on such a platform to be reasonable in terms
of additional resource requirements for our algorithms. Only
an additional single frame buffer in which to store the previous
processed frame output V̂t−1 is required for TDT. Since the
buffered B frames of V are not modified they can be shared
with the video system—note that here we are referring to
the buffer of original frames necessary for real-world system
implementation, not the reference frame buffer of the video
compression encoder. The gQT, SIT and LIT systems require
no additional memory or processing power on remote nodes
beyond what TDT requires.

In terms of added complexity introduced to central pro-
cessing, only the processing power required for TDT need
be considered. The gQT system requires no other operations.
While the QT search required by the LIT and SIT systems
involves tracking and analysis capability at the receiving end,
this functionality is assumed to be present in the central
processing station of a surveillance system capable of auto-
mated tracking. Given that the QT search is performed only
during initialization, we can exclude it from the run-time
processing load of the system. The noise estimate σt required
for TDT can easily be encapsulated in the user data Network
Abstraction Layer Unit of the H.264 stream being sent to
central processing. In LIT and SIT systems the QT-LUT will
be sent to remote nodes over the link as a standalone message.

One limitation of our QT search algorithm is that it is
not exhaustive and is suboptimal, considering only individual
modifications to {R∗

n−1, A∗
n−1} when populating candidates for

{R∗
n, A∗

n}. This was necessary to allow the algorithm to be able
to operate within realistic time constrains considering real-
world processing power and memory availability.

VII. Results

A. Experimental Framework

To demonstrate the gains possible with our algorithm a
sample implementation of the system described in Sec. VI was
tested using multiple sequences with different characteristics
such as viewing angle, video quality and type of vehicle traffic
observed. Details for the implementation and experimental
procedure in addition to test results are presented below.

The video compression for the experiments presented herein
was performed using the open-source H.264 encoder x264
[29] and the JM 16.0 H.264 reference decoder [30]. The
open-source OpenCV [31] “blobtrack” module was used as
the object tracker, which relies on the mean shift object
tracking algorithm [21]. For some experiments, we also used
the connected component (CC) tracker [22]. As part of the

TABLE I

Experimental Parameters

TDT+ Noise B C α,β,γ
Encoder Decoder Realizations (5) (8) (4)
JM 16.0 x264 10 7 2 1/3

tracking module, tracker activity was limited to areas of
transportation surveillance interest such as roads or sidewalks.
This was done to better simulate real world transportation
surveillance applications, which would concentrate on tracking
vehicles and pedestrians as opposed to other objects such as
trees or clouds.

We used the parameters in Table I for our experiments.
We used fixed QP rate control, with any variations in bitrate
generated via varying the QP for the entire sequence, or in QT
search experiments by varying both the QP and QT. No frame
or macroblock level rate control was exercised. The search for
the gQT system was done jointly over a library of sequences
used in this paper and at various spatial resolutions.

For comparison we chose the LMMSE filtering algorithm
presented in [11]. This algorithm is similar to those presented
herein in that it is a low complexity, encoder-embedded video
processing module aimed at removing noise from video. For a
given bitrate LMMSE aims to maximize reconstructed video
PSNR, while our algorithm specifically aims to preserve
automated tracking accuracy. The LMMSE implementation
used here was based on the JM 8.2 available at [30].

The following video sequences were used for testing.
1) The Golf sequence (resolution 720 × 480), shot by the

authors on DV tape (a relatively high fidelity source),
showing a local road intersection with normal traffic
flow. Also visible are trees and parking lots for office
buildings and a strip mall. There is little change to
illumination during the sample. The video is interlaced,
with little acquisition noise.

2) The Camera6 sequence (resolution 640×480), available
at [32], showing an intersection with light traffic, with
trees swaying in the wind and buildings casting reflec-
tions of passing cars as part of the scene. Passing clouds
also vary global illumination and create reflections on
car surfaces. This “noisy” content had significant ac-
quisition noise and was MPEG4 intra-only compressed
during acquisition.

3) The dt passat sequence (resolution 768 × 576), avail-
able at [33], showing a busy intersection with steady
traffic interrupted by a traffic signal, and a light urban
rail crossing. During the sample video global changes
to illumination occur. This content is uncompressed
luminance-only with significant acquisition noise as well
as global illumination changes.

B. Experimental Results

Shown in Fig. 6 is an illustration of the joint operation
of the TDT and QT systems. While there is a significant
difference in the bitrates required for Fig. 6(c)–(e), the
variance characteristics of regions to be tracked (i.e., the
trajectories of cars and pedestrians) among the three, remain
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Fig. 6. Pixel intensity variances over 30 frames of the Camera6 sequence. Here shown is (a) frame sample of the range being processed and, variances for
the (b) unprocessed (original) and (c) TDT− samples. (d) Sample from (c) is shown after compression using default “flat” quantization and TDT+, while in
(e) it is shown after compression using a QT from a LIT system and TDT+.

Fig. 7. Performance comparison of the MS and the CC trackers used as part
of the LIT system for the textitdt passat sequence.

largely unchanged. Note the major reduction in variance
of the displaced frame difference (DFD), and therefore
encoded bitrate, from Fig. 6(b) to (c). Observe that this can
be attributed to the suppression of DFD in static regions
of the frame such as buildings and roads. These variations
would clearly have been due to noise, and therefore their
suppression does not impact tracking accuracy while reducing
bitrate by 80%. Likewise, note that Fig. 6(d) and (e) appear
identical, especially along trajectories of interest (i.e., cars
and pedestrians). This similarity is because in Fig. 6(e)
frequency coefficients of low tracking impact (which are still
costly to encode) have been suppressed, providing additional
bitrate gains. Note that Fig. 6(d) and (e) have a global gray
offset representing the variance of the added synthetic noise.

The QT search uses the tracker as part of optimization
and as such our system can be considered tracker-agnostic.
To illustrate that similar bitrate gains can be achieved using
another tracker, in Fig. 7 we present a comparison of the
performance of the LIT system using the CC tracker [22],
where the system uses the CC tracker instead of the mean
shift (MS) tracker [21] for all operations. Note in the figure
that the bitrate reduction from using LIT over default coding

TABLE II

Global QT-LUT Found After Three Iterations, and the

Corresponding Sample Tracking Accuracies

R (kb/s) QP QT
145 32 [◦ • • • ◦ ◦ • • ◦ • • • • • • •]
156 32 [• ◦ ◦ • • ◦ • • ◦ • • • • • • •]
185 32 [• • • • • • • • ◦ • • • • • ◦ •]
308 28 [• ◦ ◦ • ◦ ◦ • • • • • • • • • •]
322 28 [• ◦ ◦ • • ◦ • ◦ • • • • • • • •]
368 28 [• • • ◦ • • ◦ ◦ • • ◦ • • • • •]
702 24 [• • ◦ ◦ • • ◦ • • • ◦ • • • • •]
760 24 [• • • • • ◦ ◦ • • ◦ • • • • • •]

Amean

0.652
0.743
0.757
0.772
0.794
0.810
0.823
0.836

• = 16
◦ = 255

is not significantly affected by whether the MS or CC tracker
is used. In the following, all results are presented using the
MS tracker.

The global QT-LUT shown in Table II was used to generate
the gQT experimental results presented herein. In the table the
bitrate ranges are presented in the first column, the optimized
QP and QTs, respectively, in the second and third columns, and
sample A values from our experiments in the last column. The
QTs in the table are presented in the format described in (11)
and (12). This QT-LUT was found using the MS tracker. Such
a global QT-LUT can be built into any gQT system where it
is known that the MS tracker is going to be used. The remote
node would simply choose the appropriate QP/QT pair for
compression based on the bitrate indicated by the available
channel bandwidth. If it is known that another tracker will be
used, that tracker should be used to search for the gQT. [Note
that if desired it is possible to incorporate multiple trackers by
averaging their respective tracking accuracies for (19).]

Experimental results from our test framework are presented
in Fig. 8. Note that the TDT operating points form the seed
values for the QT search, and therefore are the basis from
which LIT, SIT, and gQT experiments are performed. As seen
in Fig. 8, up to a 90% reduction in bitrate is possible using
TDT alone. A further reduction of up to 50% of the TDT
bitrate is possible using the QT search algorithms.

Note that only for the “dt passat” experiments shown in
Fig. 8(e), the SIT results at high bitrates actually underper-
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Fig. 8. Tracking accuracy A [(4), α = β = γ = 1/3] across bitrates. Results on the left column (showing default, TDT, gQT, SIT, and LIT systems) from the
proposed system. Results on the right column showing default JM 8.2 and LMMSE encoded video. Sequences used are (a), (b) Golf, (c), (d) Camera6, and
(e), (f) dt passat. The range of y-axis varies among the graphs to increase readability.

form their base TDT results. This is because the QT search
is performed using a filtered and compressed estimate as
ground truth for tracking (as opposed to one that is only
compressed). As such some decisions are made that hurt
rather than help tracking accuracy. Overall the gQT system
performs on par with the LIT variant, despite using the
global QT. The performance of the gQT system depends on
the sequences used to train the gQTs. For our experiments
we used variations of the three sequences discussed herein.
Adding more sequences to this training set can decrease the

performance gap even further. In Fig. 9, we show results
for experiments performed using the Rheinhafen sequence
(688 × 560) [33]. This sequence shows a busy intersection
viewed by a low vantage point camera, which results in
vehicles appearing much larger when closer to the camera.
Note in the figure that even though a sequence significantly
different in viewing angle than those in the gQT training set
was used, the gQT system still allows for up to an additional
30% reduction in bitrate over the gains possible from using
TDT alone.
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TABLE III

Summary of Algorithms and Results

System Bitrate Gain % Init. Time Additional Resources Comments
LMMSE −11.3 ± 51.6 None Encoder complexity PSNR-optimized filter [11]

TDT 84.6 ± 3.8 Minimal Encoder/decoder complexity No uplink or no QT capability available
gQT 87.6 ± 4.4 Minimal Encoder/decoder complexity No uplink available or no initialization delay tolerable
SIT 86.4 ± 4.6 Short Encoder/decoder complexity, uplink Uplink available, only short initialization delay tolerable
LIT 88.1 ± 4.2 Long Encoder/decoder complexity, uplink Uplink available, long initialization delay tolerable

Fig. 9. Tracking accuracy across bitrates using the Rheinhafen sequence
(showing default, TDT, and gQT systems). Rheinhafen is significantly dif-
ferent in terms of viewing angle when compared to the set of videos used to
train the gQT system shown here.

Experiments for the LMMSE filtering system were com-
pared to a baseline unmodified JM 8.2 encoder; refer to the
right column in Fig. 8 for results. Note that the results shown
in the figure indicate that both gain and loss in bitrate is
possible from the use of the algorithm, that varies among the
three sequences. This variability can be attributed to the fact
that the algorithm uses an objective function based on maxi-
mizing reconstructed PSNR, which does not always translate
to improved automated tracking accuracy. This observation
motivating the use of tracking accuracy rather than PSNR as
the metric driving rate decisions at the encoder is critical to
the work presented herein.

Note from the results presented in Fig. 8 that the difference
in performance between the LIT, SIT, and gQT systems is
very small in most cases. This indicates that the decision as
to which system to use should be made primarily based on
specific system constraints.

C. Summary of Findings and Comparison of Systems

Table III summarizes the various aspects of the algorithms
presented in this paper. In the table, bitrate gain ranges are
reported as the mean ± standard deviation of the interpolated
gains between algorithm and default compression results.

As indicated in Table III, PSNR-optimized algorithms such
as the LMMSE filter [11] do not necessarily allow better
automated tracking performance. The LIT system involves
a potentially lengthy initialization time depending on the
available channel rate and the chosen “high” bitrate for the
ground truth estimation video. For example, 1 min of video
compressed at a rate of 15 Mb/s and sent over a 512 kb/s chan-
nel will take 30 min to transmit. Where such long initialization
times and initial bandwidth requirements are acceptable, LIT
is ideal since it consolidates much of the system complexity in

Fig. 10. Visual quality (measured by SSIM [34]) for TDT and LIT systems
and default x264 for three sequences. (a) Golf sequence. (b) Camera6
sequence. (c) dt passat sequence.

the central processing unit and provides the greatest reduction
in required channel bandwidth for run-time operation. The SIT
system offers similar advantages as the LIT system without
requiring high bandwidth and long initialization times, at a
moderate bitrate/accuracy performance penalty. In the example
where LIT requires 30 min for initialization, assuming 90%
TDT bitrate savings SIT would require only 3 min. Such a
reduced initialization time would allow SIT to re-initialize the
QT for a greater number of scenarios as compared to LIT.

Drastic changes such as the onset of heavy fog or rain re-
quire re-initialization in LIT and SIT systems. If such changes
are frequent, the system downtime required for initialization
can be impractical. On the other hand, the gQT system does
not require any such downtime and can thus be considered as
a more practical alternative.
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Given that the gQT system does not optimize for specific
scenes but only for a given tracker(s), it is expected that it
may provide less reduction in bitrate compared to LIT or SIT
systems for any given scene. It is suitable for applications
where no initialization time is acceptable, or where the full-
duplex communication between the remote node and central
processing required for LIT and SIT systems is not available.
Where QT support is not available (e.g., no H.264/AVC high
profile support) TDT-only systems should be deployed.

To demonstrate that despite optimizing for tracking accu-
racy, we do not affect visual quality, we used the structural
similarity (SSIM) metric [34], to estimate visual quality. PSNR
cannot be used as a measure of video quality in our work due
to its inability to account for denoising (achieved by TDT).
SSIM (similar to PSNR) compares every frame of the encoded
video for a given bitrate with the corresponding frame in the
raw uncompressed video. We set SSIM parameters as in [34]
and report the average SSIM over all frames. Fig. 10 shows
that our algorithm does not significantly reduce visual quality
while providing the dramatic bitrate gains shown in Fig. 8.

VIII. Conclusion

In this paper, we proposed a combined video process-
ing and iterative quantization table search algorithm that
removes elements of low tracking interest as part of the
video compression system. We proposed three alternatives
for system initialization, each appropriate for systems with
different requirements. Using H.264/AVC video coding and a
commonly used tracker, we showed that while maintaining
comparable tracking accuracy our system allows for over
90% bitrate savings on the video link from remote nodes in
centralized transportation surveillance systems. While in this
paper we focused on transportation surveillance applications,
the algorithms presented herein can readily be extended to
other surveillance scenarios (such as maritime, rail, commuter
terminals), and generalized applications whenever similar re-
quirements (limited resources) and assumptions (static camera,
motion of large objects, tracking awareness) are in place.
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