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Multimodal MR Synthesis via Modality-Invariant
Latent Representation

Agisilaos Chartsias*,†, Thomas Joyce†, Mario Valerio Giuffrida, Sotirios A. Tsaftaris Member, IEEE

Abstract—We propose a multi-input multi-output fully convo-
lutional neural network model for MRI synthesis. The model is
robust to missing data, as it benefits from, but does not require,
additional input modalities. The model is trained end-to-end, and
learns to embed all input modalities into a shared modality-
invariant latent space. These latent representations are then
combined into a single fused representation, which is transformed
into the target output modality with a learnt decoder. We avoid
the need for curriculum learning by exploiting the fact that the
various input modalities are highly correlated. We also show that
by incorporating information from segmentation masks the model
can both decrease its error and generate data with synthetic
lesions. We evaluate our model on the ISLES and BRATS
datasets and demonstrate statistically significant improvements
over state-of-the-art methods for single input tasks. This improve-
ment increases further when multiple input modalities are used,
demonstrating the benefits of learning a common latent space,
again resulting in a statistically significant improvement over
the current best method. Lastly, we demonstrate our approach
on non skull-stripped brain images, producing a statistically
significant improvement over the previous best method. Code is
made publicly available at https://github.com/agis85/multimodal
brain synthesis.

Keywords—neural network, multi-modality fusion, magnetic res-
onance imaging (MRI), machine learning, brain

I. INTRODUCTION

Medical imaging technology is an important component of
modern health care, and is widely used for diagnosis and
treatment. There are a plethora of medical imaging techniques
(e.g. X-ray, CT, MRI), and each has its own characteristics
and nuances. Moreover, within Magnetic Resonance Imaging
(MRI) technique, it is often possible to obtain images using
different settings that essentially accentuate T1 and T2 content
in the underlying tissue. In this work, we refer to these
images of different contrast as modalities, and refer to our
approach as multimodal (which in the context of MRI is seen
as also multi-parametric). Image synthesis has attracted a lot
of attention recently due to exciting potential applications in
medical imaging: synthesised data for example may be used
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Fig. 1. Schematic for our model. X1, ..., Xn represent the n input
modalities and Y1, ..., Ym represent the m output modalities. The f represent
encoders, parametrised by their respective θi, which map inputs into latent
representations, α fuses those latent representations, and the decoders g, each
parametrised by their own ψj , decode the representation into outputs. Full
details of each component is given in the main text.

to impute missing images (e.g., as in [1]), to derive images
lacking a particular pathology, which is not present in the input
modality (for detection purposes, e.g., [2], [3]), to perform
attenuation correction (e.g., [4], [5]), to improve algorithm
performance on other medical imaging tasks, such as image
segmentation and registration [1], [6], and others.

The current state of the art methods in image synthesis
learn mappings between pairs of image modalities [7], [8], [9].
However, it is often the case that we have several modalities
available (a typical clinical MR protocol collects a multitude of
images), and taking advantage of their collective information
could potentially improve synthetic results. In fact, different
modalities highlight different anatomy (or pathology) in the
body and, by using them together, it is possible to obtain better
synthesis results through information sharing. For this reason,
state-of-the-art methods use multi-input architectures [9] and
obtain higher quality synthetic images. On the other hand,
if a specific number of input modalities is mandatory for a
model, then this reduces the number of applicable cases to the
ones strictly containing this complete set of image modalities.
To overcome this we propose a multi-input (and multi-output)
deep neural network, which does not require all inputs in order
to synthesise outputs, but can make use of additional inputs,
when available, to achieve enhanced accuracy.

In this paper we propose a deep fully convolutional neural
network model for MR synthesis. By synthesis here we mean
a model that takes a number of images, showing the same
organs in different modalities, as input, and outputs synthetic
images of that same anatomy in one or more new modalities.

https://github.com/agis85/multimodal_brain_synthesis
https://github.com/agis85/multimodal_brain_synthesis
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We approach the task using deep neural networks as they have
previously produced impressive results in a large range of
image processing tasks [10], [11], including promising results
for brain synthesis [7]. This is likely due to their ability to
automatically learn richly structured hierarchical features [12].

Our model takes aligned images as input1, making use of
multiple modalities when available, allowing users to simply
provide any of the available modalities at test time. We show
that it outperforms state of the art neural network and random
forest methods when trained on a single modality, with results
improving further when additional modalities are given as
input. Our end-to-end model, depicted in Figure 1, processes
input images in three stages: encoding, representation fusion,
and decoding. As each of these stages is independent, our
model is modular, i.e. encoders and/or decoders can be added
to accommodate additional modalities. Our contributions are:

1) We present a novel modular convolutional deep network
for MR image synthesis that improves the quality
of images synthesised from a single input modality
compared to current leading methods.

2) We show that our model can combine information from
multiple inputs to further improve synthesis quality.

3) By using a single shared decoder for each output
modality and a custom loss function, we are able
to learn a modality-invariant latent representation to
which all input modalities are mapped. This renders the
model robust to missing inputs, and avoids the need for
curriculum learning [14] during training.

4) We encourage the latent representation to capture the
useful information in a simple way by restricting the
size of the decoders.

5) We demonstrate that the model can be easily extended
to new output modalities through the addition of de-
coders which can be trained in isolation.

6) We improve synthesis errors of pathological images by
including information from lesion segmentation masks.
In this setting, our model can also generate on request
images with synthetic lesions by adding the affected
region as defined by a segmentation mask.

7) We show that the model works for both skull-stripped
and non skull-stripped brain data, with no change
required, demonstrating that the latent representation is
flexible, and not overly tailored to a specific task.

The paper is organised as follows. Section II reviews rel-
evant prior work. Section III discusses the requirements of
a multi-input fusion method. Section IV details our model.
Section V describes experimental setup and datasets used. We
present results in Section VI, and conclude in Section VII.

II. PREVIOUS WORK

Machine vision techniques have been extensively used in
MR image processing for image synthesis. They can be broadly

1Preliminary work, specialised to handle data misalignment [13] is dis-
cussed in Section VII. In this paper we experiment with different latent
representation sizes and fusion operators, examine the way information is
combined from various inputs, carry out thorough evaluation under three
metrics, and extend to both full sized images and non skull-stripped data.

divided into those that use only one input modality (unimodal)
and those that use more (multimodal). We discuss these below
and mention some limitations. Since in the multimodal case
latent representation learning becomes important, we also
review key machine learning literature on this topic.

Unimodal: MR synthesis has often been treated as a patch-
based regression task [15], [16], [3], [17]. In this setting
mappings are learnt, using various techniques, which take a
patch of an image or volume in one modality, and predict the
intensity of the central pixel of the corresponding patch in a
target modality. The performance of these approaches has been
shown to be aided by the addition of hand-crafted features that
capture elements of the global structure of the image [9].

Another common approach to synthesis is the use of an
atlas, such as in [16], [2], [18]. Here, rather than learning
a mapping, an atlas of image pairs is leveraged, and recon-
structing a new volume from a source modality is achieved
by matching the volume with the entries in the atlas of the
same modality, and constructing the synthetic images from the
corresponding atlas images in the target modality.

A sparse dictionary representation of the source and target
modality has been proposed in [19], which synthesises new
images with patch matching. In [20], joint dictionary learning
is used to learn a cross-modality dictionary of the pair of source
and target modalities that minimises the statistical distribution
between them via optimisation. Image synthesis has also been
treated directly as an optimisation problem in an unsupervised
setting [8]. The target modality candidates are generated by a
search method and then combined to obtain a synthetic image.

More recently, neural networks have been applied to MR
synthesis and segmentation, and like many of the sparse coding
based methods, often they approach the problem as a patch
based regression [21]. The Location Sensitive Deep Network
(LSDN) [7] is a patch-based neural network that, given as input
a patch and its spatial position within the volume, can learn
a position-dependent intensity map between two modalities.
Motivated by the observation that conditioning on the location
in the volume greatly reduces the complexity of the intensity
transforms needing to be learnt, LSDN has been shown to
produce state of the art MR synthesis results. Another neural
network approach is [22], in which a deep encoder-decoder
network synthesises images of a target modality.

Neural networks have also been employed to synthesise
pseudo-healthy images. In [23], a denoising variational autoen-
coder was used to synthesise pseudo-healthy images for the
purpose of image registration. Using the denoising mechanism
of [24], the variational autoencoder of [23] models lesions as
noise, learning to synthesise images without damaged tissues.

One main drawback of these approaches is their inability to
robustly exploit multiple input modalities. In addition, patch-
and atlas-based methods can be prohibitively slow at test time.
Further, the overhead of having many unimodal models from
an application standpoint is significant since all these different
models have to be trained and maintained. Certainly, there
could be a benefit to learning a single multi-purpose model.

Multimodal synthesis: Multimodal image analysis is on the
rise, as evidenced by recent multimodal analysis methods for
example to solve segmentation (e.g. [25], [26]) or classification
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(e.g. [27]) tasks. This is natural as the inputs image the same
subject, but provide different information to be exploited.

The single input, multi-output method, Extended Modality
Propagation [28], warrants mention. Unlike related methods,
where the input is expected to be an image in some source
modality, in [28] the input is a label map, which delineates the
areas of interest (e.g., white and grey matter), and the algorithm
synthesises multimodal images accordingly. However, it uses
a single input and solves a somewhat different problem.

Although for segmentation rather than synthesis, Hetero-
Modal Image Segmentation (HeMIS), a convolutional neural
network model, uses a robust fusion method to address the
challenge of missing input data [26]. We discuss this approach
in more detail in Section IV-E, and use their proposed multi-
input fusion method as a benchmark in our experiments.

The model we propose here addresses the challenge of
multi-input, multi-output synthesis, and does so in a robust
way: outperforming existing approaches, and, when inputs are
missing, performing as well as a model trained specifically for
that fewer input case. Central to our approach to multimodal
data is the embedding of inputs into a latent space, and we
now review key relevant literature on this task.

Shared representation learning: Perhaps one of the rea-
sons that multimodal synthesis has been difficult to accomplish
is the need to map data into a common shared representation.
Previous work on multimodal data fusion and shared repre-
sentation in neural networks [29] has shown the plausibility
of shared latent representations for generative tasks. There has
also been relevant work on common representation learning,
in which different data types are embedded into a common
representation space. Key early work on multimodal learning
that was robust to missing data is the multimodal autoencoder
[30], in which a bimodal deep autoencoder was learnt for
audio and video data of speech. This model could reconstruct
both modalities from either the audio or the video, and was
trained by minimising this reconstruction error. However, as
noted in [31], there is no direct learning signal encouraging a
shared common representation. In an attempt to address these
shortcomings Correlational Neural Networks [31] both directly
encourage correlation in the common representation space, and
minimise the cross reconstruction error. However, their current
formulation restricts them to the bi-modal setting, due to the
use of explicit correlation calculations.

Here we are interested in fusing any number of modalities,
and we do not use the formulation of Correlational Neural
Network directly. Instead, as our inputs are already similar, in
that they are all images of the same organ, are aligned and
differ only in intensity patterns, we propose a simple method
of training that enforces the same constraints: minimising
reconstruction error and the distance between the embeddings
in the common space, which indirectly maximises the corre-
lation. Thus, our approach is broadly similar to the statistical
regularisation approach in [32], in which cross-modal scene
representations are learnt. However, in [32], the regularisation
is done by encouraging the latent representation activations
for all modalities to follow the same distribution. Whereas
here, as the various inputs are sufficiently similar, we directly
encourage the activations to be equal. Our approach to latent

Fig. 2. Our U-Net [33] like encoder(s) f(·|θ). Each input modality i has its
own encoder, parametrised by θi, that maps the input image in modality i to
the latent space Zi. We use L = 16 channels in the latent space.

representation learning is detailed in Section IV-D.

III. FUSION REQUIREMENTS

Many synthesis approaches learn to synthesise one modality
from another. Thus, when n modalities are being considered,
there exist n(n − 1) possible one input one output synthesis
tasks, and a separate model would be required for each one.
This approach not only becomes infeasible as n grows, it also
does not benefit from other input sources despite the fact they
may be available. On the other hand, if the accuracy of a model
is improved by leveraging multiple input modalities, but all
inputs are required, the applicability is reduced to only those
situations in which all required modalities are available.

The challenge is to build a model which can take as
input any subset of the n image modalities to produce its
output. The model we introduce here achieves this goal by
approaching the task in three stages. Firstly, all inputs are
projected into a shared latent representation space, then these
latent representations are fused into a single representation and,
finally, mapped to the required output modality. The fusion
step, (detailed in Sections IV-B and IV-E), can be performed
on any number of latent representations and having all of the
input modalities improves results.

IV. PROPOSED APPROACH

Our proposed model is a fully convolutional deep neural
network, that can map multiple input modalities to multiple
output modalities. It takes as input full 2D volume slices of
any subset of its inputs, and synthesises the corresponding
2D slices in all output modalities. The model is trained end-
to-end with gradient descent, and simultaneously learns both
encoders and decoders. Through the use of a multi-component
cost function the model is encouraged to learn latent represen-
tations that balance modality-invariance with the retention of
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modality specific information. During the fusion step, the latent
representations produced by each of the encoders are combined
to form a single latent representation, which is then decoded to
produce the final output. Below, we will first describe the three
sections of our model in order: encoders, fusion method, and
decoders. We then discuss in depth the importance of learning
good latent representations, and detail our multi-component
cost function, providing the motivations for each component.

A. Encoding
We learn one independent encoder for each input modality

of our model, with an architecture as shown in Figure 2.
The encoders embed single-channel input images into a multi-
channel latent space. Specifically, if our input images are slices
of size W ×H then out latent representation is an L channel
image of that same size. We took inspiration from U-Net [33]
to make our encoder modules. The idea behind the U-Net’s
down-sampling followed by up-sampling and skip connection
architecture is to allow the network to exploit information at
larger spatial scales than those of the filters, whilst also not
losing useful local information. In addition, skip connections
facilitate gradient flow during training, as discussed in [34].
Our encoders are shallower than the original U-Net having
only two downsample (and upsample) steps compared to U-
Net’s four downsample (and upsample) steps. This reduces the
training and run times for the model. Although the final quality
of synthesis shown herein already outperforms the compared
approaches, it may be possible to decrease the error further
through the use of deeper encoders. We also replaced the ReLU
[35] in the standard U-Net with Leaky ReLU [36], as we found
that the network is easier to train and it improves the quality of
the latent representations.2 Throughout the network, we use a
stride of 1, and pad the images by repeating the border pixels
so that the final output has the same width and height as the
original input. An encoder f is trained for each input modality
Xi to learn the set of parameters θi (the network’s weights)
that fully describes the map from the i-th input modality to
the latent space Zi. In our model we use a 16-channel latent
representation. Experiments with different latent representation
sizes showed that this produced good results, whilst keeping
the model small enough to easily train (see Section VI-A).

B. Fusion
During the fusion step, our model uses a fusion operation,

α, to combine each of the individual representations produced
by the encoders into a single fused representation, which
we call Zα. It is this fusion step that gives the model its
robustness to missing input data. In theory, α could be chosen
to be any function that takes as input any number of latent
representations, and returns a single fused latent representation.
We want this fused representation to integrate information

2One common problem was that the network often got stuck in a bad local
optimum when all zero channels in the latent representation developed early
in training. The use of LeakyReLUs significantly eased the problem, resulting
in consistent performance across runs, likely due to the fact that they always
provide a small gradient, whereas ReLUs have 0 gradient when deactivated.

Fig. 3. The decoder module g(·|ψ), which is built from two residual blocks.
Each output modality j has its own decoder, parametrised by ψj , that maps
latent representations to the outputs of that modality. In our experiments we
set the channels in the latent space L to be 16.

present in the various inputs, in a way that we not only preserve
commonly represented features, but also retain unique features
expressed in one modality but not the others. Additionally,
the fused representation should be robust to varying numbers
of inputs and if some input modalities are missing, it should
accommodate such missing inputs. Specifically, the aim is that,
given any subset of latent representations, we produce a fused
latent representation that is at least as good as each of the
constituent latent representations, in terms of synthesis quality.

To this end, we use the pixel-wise max function (1) to
combine our latent representations into a fused latent repre-
sentation. The use of the max means that, in each channel,
each pixel of the latent representation has exactly the value of
the corresponding pixel in one of the original latent represen-
tations. In particular, if the signal is large and positive in one
constituent latent representation, then it will be chosen for the
fused representations. Our fusion operator α is defined as:

Zα = α(Z1, ..., Zn) = max(Z1, ..., Zn), (1)

for n input modalities and corresponding individual latent
representations. The fused representation is exactly the same
size and shape as the individual latent representations Zi. The
performance of this fusion method is intimately linked with
the nature of the latent representations learnt, which is detailed
in Section IV-D. Note that the use of max does not bias the
method towards bright final outputs, as the intensities of the
synthesised image depend on the decoding step.

Although we use max fusion in our model, there is potential
to learn the fusion operation itself, for example by learning
an additional hyper-parameter that interpolates between mean
and max fusion. This may further regularise the model as non-
max fusion allows gradient from the fused output to flow to
all inputs, rather than just the max.

C. Decoding

The decoding stage of the model uses a fully-convolutional
network to map the latent representation to a target output
modality. Here the input is a multi-channel image-sized latent
representation, and the output is a single channel image of
the required modality. The exact architecture of our decoder
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g is shown in Figure 3. We train one decoder for each output
modality m, learning the parameters ψj , i.e. the network’s
weights, to map the latent space Zα to the j-th output modality.
We kept the decoder shallower than the encoder to encourage
the latent representation to contain the useful information
in a simple way. Deeper decoders showed no considerable
improvement, whilst increasing the computational overhead.

D. Learning Modality-Invariant Latent Representations

The nature of the latent representation learnt by our model
depends critically on the cost function used to train it. We train
our network to minimise a cost function constituted from three
cost components which we will introduce below. The final cost
drives the network to achieve three goals:

1) Each modality’s individual latent representation should
produce all outputs as accurately as possible.

2) The latent representations from all input modalities
should be close in the Euclidean sense.

3) The fused latent representation resulting from α should
produce all outputs as accurately as possible.

Together these constraints are sufficient to ensure that our
architecture works well with a variety of fusion operations,
as well as our pixel-wise max approach discussed in IV-B.

It is the fusion step that gives the model its robustness to
missing input data as the fusion operation α, can be applied
to any number of latent representations, and always yields
a single fused latent representation. However, the quality of
this fused representation depends critically on both the latent
representations produced by the encoders, and the nature of
this fusion operation. As noted in [31], simply embedding
inputs into the same representation space does not ensure that
they share a meaningful latent representation. The embeddings,
if not encouraged to do so, have no reason to use the latent
space in a comparable way. If this is the case, then decoding
one latent representation is distinct from decoding the other,
and moreover, fusion becomes difficult, as operations such as
taking the mean are no longer meaningful. Another way to
state this same problem is that, if the different embeddings
use the latent space in different ways, then in order to know
how to decode a latent representation, you need to know from
which modality it originally came, i.e. the meaning of the
latent representation is dependent on its initial modality. Thus,
in order to overcome this issue we need to produce a latent
representation that is independent of the originating modality.

Let Zki be the latent representation of image k in modality i,
i.e. Zki = f(Xk

i |θi). One requirement of our model is that any
input alone should produce good synthesis results, since the
model should work well with any subset of inputs, including
a single input. Thus, if Y kj is the k-th image in our target
output modality j, then we want g(Zki |ψj) to equal Y kj for
every input modality i. Essentially, each modality’s individual
latent representation should produce all outputs as accurately
as possible, when decoded.

Cost component c1: This desire gives rise to the first
component of our cost function. Given n input and m output
modalities then our model is fully described by the parameters

for the n encoders θ = θ1, ..., θn, and the parameters for the
m decoders, ψ = ψ1, ..., ψm. We define c1 as:

c1(k|θ,ψ) =
1

m

n∑
i=1

m∑
j=1

MAE(g(f(Xk
i |θi)|ψj), Y kj ) (2)

where Xk
i is the k-th slice of input in modality i, Y kj is the

corresponding slice in output modality j, and MAE is the mean
absolute error, where here the mean is taken over all pixels
in the image. Note that we divide by m to average over all
outputs. Thus, this cost can be seen as the sum of each input
modality’s average reconstruction error across all outputs.

Note that decoders, g, are shared, i.e. for each output
modality there is exactly one decoder, which is used to decode
the latent representations from each of the input modalities.
This provides some encouragement for the encoders to come
to a shared, modality-invariant representation during training.
However, due to the highly non-linear, non-injective nature
of the decoder, it is possible for very different latent repre-
sentations (i.e. ones with a large Euclidean distance between
them) to be decoded into very similar output images. Thus,
although (2) encourages the latent representations to be mutu-
ally compatible with a shared decoder, it does not necessarily
result in embeddings that share the same semantics. In order
to ensure that we can meaningfully fuse latent representations,
we exploit the fact that the input images are already highly
correlated, since they are images of the same subject, and we
directly encourage the encoders for the different modalities to
produce similar embeddings for a given image.

Cost component c2: To this end, we introduce a second
cost that captures the desire that representations from all input
modalities should be similar. Although what we really mean
by similar here is related to both the details of the fusion
operation α and the decoder, we encourage the representations
to be close under the Euclidian norm, as if they are sufficiently
similar under this metric they will also be sufficiently similar
in the required way. In order to bring all of the latent
representations together, we minimise their mean pixel-wise
variance (c and p index the channels and pixels respectively):

c2(k|θ) =
1

|C||P |
∑
c∈C

∑
p∈P

var(f(Xk
1 |θ1)p,c, ..., f(Xk

n|θn)p,c)

(3)
Cost component c3: Although c1, c2 encourage the en-

coders to learn a shared, modality-independent latent represen-
tation, so far there is nothing to encourage this representation
to be especially suitable for the fusion operation α used in
the model. In fact, so far the particular fusion method chosen
has no bearing on the training of the network. The shared
representation learnt should be admissible for a wide range
of fusion options, but if we decide on a fusion operation in
advance, then there is potential to learn a shared representation
that works particularly well with that fusion method. As well
as meeting the two constraints from above, there may also
be sufficient flexibility in the final representation for it to
specialise towards the fusion operation in use. To this end,
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we include a final component in our cost function:

c3(k|θ,ψ) =

1

m

m∑
j=1

MAE(g(α(f(Xk
1 |θ1), ..., f(Xk

n|θn))|ψj), Y kj )
(4)

to directly encourage the minimisation of the reconstruction
error from the fused representation. This is the only one of
the three costs that involves the fusion operation α.

E. Other Approaches to Fusion
Our multi-component cost function encourages modality-

invariant, yet informative, latent representation that can be
used with a variety of fusion techniques. Here we discuss
alternatives to our pixel-wise max approach (which we also
compare with in our experiments).

Latent mean fusion: One simple way to fuse a number of
latent representations is to average over them. With this ap-
proach to fusion, the final fused latent representation is simply
the pixel-wise mean of the individual latent representations.

Zα = mean(Z1, ..., Zn) (5)

This approach should work well if the individual latent rep-
resentations are approximately noisy versions of a common
latent representation. On the other hand, in situations where in
one of the input modalities it is possible to detect details that
cannot be seen in the others, this averaging would smooth
out these details. Also, it is unable to preferentially select
specific input modalities. Therefore, the information in the
latent representation from a highly informative input could be
partially lost through averaging with the latent representations
from several other less informative inputs.

HeMIS-like fusion: One approach to the creation of a fused
latent representation, introduced in [26], is to define the latent
representation as the concatenation of the mean and variance
of the individual latent representations Zi.

Zα = concat(mean(Z1, ..., Zn), var(Z1, ..., Zn)) (6)

This method was shown in [26] to work very well for
image segmentation, producing state of the art results. Our
experiments using this fusion showed competitive results also
for modality synthesis. HeMIS uses both the mean and the
variance over the individual representations as its fused latent
representation, and thus the decoder has information about
where the latent representations most disagree, as well as
their average value. However, it is still the case that all
input representations contribute equally to the final latent
representation. Unlike max fusion, HeMIS-like fusion can’t
explicitly rely on more informative inputs. To achieve a 16-
channel latent representation with this method we generate
eight channels with the encoder, so that the concatenation of
the mean and variance is sixteen channels.

Output mean: As a final baseline, we also compare with
the results produced by taking the average of the synthesised
images decoded from each individual latent representation
Z1, ..., Zn independently. Thus, instead of decoding a fused
representation to get a single synthesised output, we decode

each individual representation into a synthetic image and take
the average of those individual images.

V. EXPERIMENTAL SETUP

Datasets: We use three datasets to test our model. Firstly we
used 28 pre-processed volumes from the Ischemic Stroke Le-
sion Segmentation (ISLES) 2015 challenge.3 The volumes have
been skull-stripped and re-sampled to an isotropic spacing of
1mm3 (SISS) resp. and co-registered to the FLAIR sequences.
The provided volumes were imaged in T1w, T2w, FLAIR
and DWI. We also used data from the multimodal Brain
Tumour Segmentation (BRATS) 20154 challenge. Data are
skull-striped, co-aligned, and interpolated to 1mm3 resolution.
The dataset consists of high and low grade glioma cases, from
which we used the latter containing 54 volumes, imaged in
T1w, T1c, T2w, and FLAIR. Both datasets are released with
segmentation masks of lesions. Finally, we used 28 volumes
from the Information eXtraction from Images (IXI) dataset5,
which contains co-registered T1, T2 and PD-weighted images
from healthy subjects, in order to evaluate our method in non
skull-stripped images. Our architecture uses 2D slice of the
volumes. If not otherwise stated, we use axial-plane slices for
our experiments (examples of which are in Figure 5).

Pre-Processing: We perform all experiments on the data at
its full resolution, trimming excess border pixels resulting in
volumes of 224 × 160 pixel images for the ISLES dataset,
240 × 240 for the BRATS dataset and 256 × 256 for the
IXI dataset. Trimming is done to remove uninformative
background areas, and is done in such a way that the resulting
image size is divisible by 4, so that the two 2 × 2 max-
pooling, followed by the two 2× 2 upsampling operations of
the encoder do not change the image size. We keep all slices,
which is ≈ 150, although the number of slices differs slightly
between volumes. As a final pre-processing step we normalise
each volume by dividing by the volume’s average intensity. As
well as centralising all the volumes across all modalities to a
mean of 1, this also keeps all values positive, all background
values as 0, and maintains the slight differences in volume
variance seen between healthy and unhealthy volumes. For
our DeepMedic [25] test, we instead normalised the data by
subtracting the mean and dividing by the standard deviation,
as this is a requirement for the model.

Training and Implementation Details: We train our model
w.r.t. a cost function given by the three constituent parts
described in Section IV-D. Our final cost function is:

3∑
t=1

∑
k∈K

ct(k|θ,ψ). (7)

where K is the set of images in the current minibatch.
The model is trained using Adam [37] with default parame-

ters, to minimise the cost w.r.t the parameters θ and ψ. We use
a batch size of 16 images. All our code is written in Python

3http://www.isles-challenge.org/ISLES2015/
4https://sites.google.com/site/braintumorsegmentation/home/brats2015
5http://brain-development.org/ixi-dataset/
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Fig. 4. The setup of the model during training for a two input one output case.
As we are dealing with a single output there is only one decoder, g|ψ1, used
three times: once to decode each of the two individual latent representations
Z1, Z2, and once to decode the fused representation Zα. At test time we use
the synthesis result from the fused representation as our output. Here we write
Y1,i to mean output modality Y1 synthesised from latent representation Zi.

with Keras6, and we run it using the Theano backend [38] on a
single NVidia Titan X GPU. We train all models using 5-fold
cross-validation. For each cross-validation split, we divide the
datasets into training, validation (used to determine when to
stop training to avoid overfitting), and test examples. In each
fold different test and validation volumes are used, and the
remaining volumes are used for training. In the case of ISLES
the training, validation and test sets consist of 22, 3 and 3
volumes respectively, with one unhealthy volume in each of
the validation and test sets, and the remaining 7 in the training
set. For BRATS, the training, validation and test sets consist of
42, 6 and 6 volumes respectively, except when using FLAIR
images, when we excluded three volumes from the training
set as large portions of those volumes were missing in the
FLAIR data. For IXI, we use 22 volumes for training, 3 for
validation and 3 for testing. Training takes around one hour
for each ISLES and IXI split and two hours for each BRATS
split. When trained, synthesising a volume with our model
takes approximately one second.

Once the model has been trained its test-time structure is
that shown in Figure 1. However, during training additional
outputs are required for calculation of the cost in eq. 7, and
thus the network has the layout shown in Figure 4.

Benchmark Methods Details: As well as comparing the
results of our model with those produced by the various fusion
approaches discussed in section IV-E we also compare with
three synthesis methods detailed below:

Modality Propagation (MP): This is a standard benchmark
for synthesis methods [2], which we implemented in Python
to include as a baseline. All parameters are taken from the
original paper. As it is prohibitively slow to synthesise a
volume, and it has been shown that the method is outperformed
by LSDN [7], we run MP on the ISLES dataset to show that
it performs as expected, that is, with a slightly higher mean
squared error that LSDN. See Table II for details.

Location Sensitive Deep Network (LDSN): We implemented
the LSDN as described in [7]. Specifically, we implemented
the larger 400,40 neuron version (referred to as LSDN-2 in the
paper) without the shrink-connect optimisation, as this is the
variant shown to produce the best results in the paper. We train
the model to minimise the mean squared error using stochastic
gradient descent with a batch size of 128. This approach is

6https://github.com/fchollet/keras

slightly outperformed by [8] from the same authors. Here we
compare with LSDN, as both LSDN and our approach are
neural network based.

Regression Ensembles with Patch Learning for Image Con-
trast Agreement (REPLICA): Our final baseline method is
REPLICA [9], a supervised random forest image synthesis
approach which uses multi-scale features to achieve accurate
synthesis results. As this method is able to handle multi-
input situations, we compare it to our model in unimodal and
multimodal settings. We implemented REPLICA in Python.

Evaluation metrics: To evaluate the performance of the
methods, we use mean squared error (MSE), structural similar-
ity index (SSIM) and peak signal-to-noise ratio (PSNR). Given
two volumes y, ŷ ∈ Y , where y is the ground-truth image in the
output modality, and ŷ is the prediction, the MSE is computed
as: MSE(ŷ, y) = |ΩY |−1 ∑

x∈ΩY
(ŷ(x)− y(x))

2 where ΩY
is the set of 3D coordinates of pixels for modality Y , and
|ΩY | is the number of voxels in ΩY . SSIM is computed as:
SSIM(ŷ, y) =

(2µŷµy+c1)(2σŷy+c2)

(µ2
ŷ
+µ2

y+c1)(σ2
ŷ
+σ2

y+c2)
where µy and σ2

y are
the mean and variance of volume y and σŷy the covariance
between the volume y and the prediction. Finally, PSNR is
computed as: 10 log10(

MAX2
I

MSE ), where MAXI is the maximum
pixel value of the image.

Significance tests: In order to assess our results we compare
our method to the best baseline method in each experiment
using a paired t-test and testing for significance at the 5%
level. Significant results are shown in bold in the tables.

VI. RESULTS AND DISCUSSION

Here we present the results of a series of experiments
examining our proposed model and comparing it to other
approaches. In VI-A we first perform experiments to determine
the number of channels to use in our latent representation. In
VI-B we show the performance of our model on unimodal
synthesis. Subsequently, in VI-C we demonstrate that adding
inputs increases performance. We also demonstrate robustness
to missing inputs comparing against individual models trained
specifically for the inputs present. In VI-D we show the im-
portance of each of the three components of our cost function.
Next, in VI-E, we proceed to demonstrate that we can train a
new decoder for an unseen output without learning a new latent
representation. In VI-F we show that our model can be used
with other fusion methods. In VI-G we demonstrate that our
model also works for non skull-stripped data. In VI-H we show
that segmentation masks can be used to further improve our
model’s results, and that they permit the generation of synthetic
lesions. In VI-I we show that our model can synthesise images
from views not seen during training, and also demonstrate that
our synthetic volumes have off-plane consistency.

A. Latent representation size
We first ran experiments to determine the best latent repre-

sentation size. Table I results show that the 16 channel latent
representation outperforms both the 4 and 8 channel versions
statistically significantly in both MSE and PSNR, and also by a
small margin in SSIM. Thus, as the 16 channel representation

https://github.com/fchollet/keras
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Fig. 5. Comparison of the unimodal models for T1 → T2 on a healthy
and unhealthy test case. The columns show the input image, the target output
image and then the synthesis results of MP, LSDN, REPLICA, and our model
respectively. The first row is for a healthy brain, and the second row shows
the results on a brain with a large lesion.

TABLE I. COMPARISON OF DIFFERENT SIZED LATENT
REPRESENTATIONS FOR T1, T2, DWI→ FLAIR

4 channels 8 channels 16 channels

MSE 0.184 (0.07) 0.191 (0.08) 0.171 (0.06)
SSIM 0.866 (0.02) 0.865 (0.02) 0.869 (0.02)
PSNR 31.61 (1.69) 31.50 (1.72) 31.10 (1.59)

achieves the best results, while keeping the network’s size
manageable, we use it for our model in all experiments.
Although we could optimally tune the latent representation
size for each experimental setup, here we are interested in
demonstrating that a single model can perform well in a range
of tasks, and thus fix the latent representation size throughout.

B. Unimodal synthesis
In our first experiment we train two unimodal models to gen-

erate T2 and FLAIR images respectively from T1 inputs. We
repeat the experiment for the ISLES and BRATS dataset and
compare our models with the benchmark methods described
in Section V. The results are presented in Tables II and III
and show that our model outperforms the other methods. In
addition, statistically significant differences are produced on
the ISLES dataset for SSIM, and on the BRATS dataset for
all metrics. Examples images are shown in Figure 5.

C. Multimodal synthesis
To assess the performance of our method on multiple

inputs we compare two experimental setups using the ISLES
dataset, with T1, T2, DWI as inputs, and FLAIR as output. In
Experiment A we train distinct instances of our model for each
possible combination of T1, T2, and DWI inputs, synthesising
FLAIR in all the cases. Thus, in total we train 7 different
models: 3 unimodal, 3 bi-modal, and 1 tri-modal. As a baseline
comparison we also train 7 REPLICA models for the same
tasks. In Experiment B we take our trained tri-modal model
from Experiment A, and at test time, provide different subsets
of the inputs (e.g. only T1 images, only T2 and DWI images,
etc), to evaluate robustness to missing inputs.

TABLE II. T1→ T2 AND T1→ FLAIR SYNTHESIS FROM UNIMODAL
MODELS ON ISLES DATASET

T2 MP [2] LSDN [7] REPLICA [9] Proposed

MSE 0.397 (0.15) 0.345 (0.12) 0.325 (0.12) 0.299 (0.11)
SSIM 0.798 (0.02) 0.811 (0.03) 0.823 (0.24) 0.831 (0.03)
PSNR 25.22 (0.96) 25.22 (1.36) 25.51 (1.20) 25.78 (1.39)

FLAIR MP [2] LSDN [7] REPLICA [9] Proposed

MSE 0.343 (0.12) 0.286 (0.10) 0.301 (0.11) 0.268 (0.10)
SSIM 0.802 (0.03) 0.820 (0.03) 0.814 (0.03) 0.831 (0.04)
PSNR 28.81 (2.13) 29.61 (2.17) 29.43 (2.25) 29.99 (2.24)

TABLE III. T1→ T2 AND T1→ FLAIR SYNTHESIS FROM UNIMODAL
MODELS ON BRATS DATASET

T2 LSDN [7] REPLICA [9] Proposed

MSE 0.449 (0.12) 0.573 (0.17) 0.333 (0.13)
SSIM 0.909 (0.02) 0.901 (0.01) 0.929 (0.17)
PSNR 30.12 (1.62) 28.62 (1.69) 30.96 (1.85)

FLAIR LSDN [7] REPLICA [9] Proposed

MSE 0.332 (0.16) 0.432 (0.17) 0.283 (0.14)
SSIM 0.887 (0.01) 0.870 (0.01) 0.897 (0.01)
PSNR 29.68 (1.56) 28.32 (1.38) 30.32 (1.61)

The results of both setups are reported in Table IV, and a
test example is shown in Figure 6. In the table we show in
bold results where REPLICA is outperformed with statistical
significance. Overall, in all three experiments, we observe the
positive effect of multimodal inputs. With our model, this gain
does not penalise flexibility as its performance when data is
missing (Experiment B) is never worse than the performance
of a model trained specifically for the fewer input case (Ex-
periment A). This demonstrates that our model, due to the
effectiveness of the latent representation, is able to exploit the
input modalities when available, without becoming reliant on
them. Our model outperforms REPLICA in 6 of the 7 experi-
mental setups, with statistically significant improvements in 5
cases, when using one model with missing inputs (Table IV).

This experiment’s setup also allows us to compare our
model for different input combinations. Three observations
can be made: Firstly, T2 alone gives the highest error, and
all other input combinations, (including T1 alone and DWI
alone) result in statistically significant improvements over just
T2. Secondly, in all two-input cases, the results are better than
the results for the constituent modalities individually, and this
improvement is also statistically significant in each case (e.g.
when T1 and DWI are given as input the results outperform
those for either T1 or DWI alone). Lastly, when T1, T2 and
DWI are all provided as input the results are significantly
better than in all other cases. To summarise: in all cases
adding an additional input modality resulted in a statistically
significant improvement, when compared to the results without
that additional input. It is worth noting that, as all outputs are
coming from the same fixed FLAIR decoder, these significant
differences can be understood both as significant differences
in the final outputs, and/or as significant differences in the
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Fig. 6. Example multimodal synthesis from our model, using all three
inputs to synthesise FLAIR. The first row shows the T1, T2 and DWI inputs
respectively. In the second row, the images below each input show the synthesis
result from that input’s latent representation alone (i.e. single input results), the
fourth image shows the synthesis result from the fused latent representation,
and the final image is the FLAIR ground-truth.

Fig. 7. Visualisation of the max-fusion behaviour, showing from which inputs
the values in the latent representation originate. As can be seen, there is no
simple relationship between the input selected and the underlying anatomy.
The first row shows T1, T2 and DWI inputs. The first three images in the
second row show, for a single channel, the pixels of the individual latent
representations that are selected from the max-fusion operator. The fourth
image shows the three results simultaneously, with pixels coming from T1, T2
and DWI shown in red, green and blue respectively. The final row is the same
as the second row, but rather than showing the results for a single channel, it
shows the result averaged over all 16. Note that this figure shows only which
inputs are chosen, not the values of the latent representations themselves.

fused latent representations. We also visualise the behaviour
of our max-fusion operator α in the three input case, (Figure
7). As can be seen, all inputs contribute to the final fused latent
representation, and the contributions of the different modalities
are not related to tissue classes in a simple way.

D. Influence of each cost component

Here we demonstrate that the robustness seen previously
stems from the composition of our cost function. To show
this, we evaluate the effect of each of the three components

TABLE IV. SYNTHESIS OF FLAIR IMAGES WHEN TRAINING IN THE
Experiment A AND Experiment B SETUPS.

Combinations of Input MSE (FLAIR modality)

T1 T2 DWI REPLICA Proposed: Exp. A Proposed: Exp. B

� — — 0.301 (0.11) 0.268 (0.10) 0.249 (0.09)
— � — 0.374 (0.16) 0.328 (0.14) 0.321 (0.12)
— — � 0.278 (0.09) 0.303 (0.13) 0.285 (0.13)
— � � 0.235 (0.08) 0.215 (0.09) 0.214 (0.09)
� — � 0.225 (0.08) 0.208 (0.09) 0.198 (0.02)
� � — 0.271 (0.12) 0.218 (0.08) 0.214 (0.08)
� � � 0.210 (0.08) 0.171 (0.06) 0.171 (0.06)

Average: 0.271 0.244 0.236

TABLE V. SYNTHESIS OF FLAIR IMAGES WHEN TRAINING WITH
DIFFERENT COST FUNCTIONS

Inputs MSE (FLAIR)

T1 T2 DWI all costs no c1 no c2 no c3

� — — 0.249 (0.09) 0.546 (0.19) 0.261 (0.10) 0.250 (0.10)
— � — 0.321 (0.12) 0.903 (0.47) 0.331 (0.14) 0.316 (0.13)
— — � 0.285 (0.13) 0.497 (0.19) 0.293 (0.14) 0.286 (0.13)
— � � 0.214 (0.09) 0.324 (0.16) 0.262 (0.12) 0.276 (0.11)
� — � 0.198 (0.02) 0.252 (0.10) 0.240 (0.09) 0.228 (0.09)
� � — 0.214 (0.08) 0.329 (0.12) 0.345 (0.17) 0.277 (0.10)
� � � 0.171 (0.06) 0.185 (0.08) 0.176 (0.07) 0.278 (0.11)

Average: 0.236 0.434 0.273 0.273

described in Section IV-D by assessing model performance
when each component is individually removed. We train three
models for synthesising FLAIR from T1, T2, DWI using the
ISLES dataset, each with one of the cost components removed.
These results, along with the results for training with the
full cost function are shown in Table V. The best result is
achieved when all cost components are employed. Specifically,
without c1 the synthesis result is very good when the model
has all inputs, but considerably worse when inputs are missing.
Without c2, the results for single inputs are good, but results
with multiple inputs are worse. Finally, when component c3
is excluded from the cost, there is a slight degradation in the
results with a single missing input, and when all three inputs
are given the model is significantly worse. Thus, it can be seen
that our multi-component cost enables the model to achieve
high accuracy whilst retaining robustness to missing data.

The influence of the cost components can also be seen
visually in the latent representations learnt by our model, see
Figure 8. Observe the similarity of all latent representations
achieved by minimising their variance through cost function
component eq. (3). At the same time the fusion operation
α, preserves unique information across the latent components
corresponding to bright pixels of the individual latent represen-
tations. Note that these bright pixels represent strong features,
and do not necessarily correspond to bright pixels in the output.

E. Adding new decoders
One aim of our latent representations is to introduce modal-

ity invariance. This should allow adding inputs and outputs to
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Fig. 8. A channel from the 16-channel latent representation of our model
with T1, T2, DWI inputs. The first three images show the latent representations
learnt by the three inputs, T1, T2, DWI respectively. The fourth column shows
the fused representation. The high-intensity regions in ZT2, which correspond
to lesions, are preserved in the fused representation Zα despite the latent
representations ZT1 and ZDWI showing minimal or no lesion information.

an already trained network, with minimal performance change.
Here we demonstrate that an additional output can be appended
to an already trained network. We train a model with inputs
T1 and T2, and outputs DWI and Flair. At test time, the mean
squared error of DWI images is 0.218. Next, we train another
model with the same inputs, but only Flair as output; to this
already trained model, we add just a DWI decoder that we then
train in isolation. The test error for DWI was 0.263, which is
∼ 17% higher, and not a statistically significant difference,
compared with the previous case.

F. Alternative fusion operations
In this experiment we demonstrate that our model is still

effective with other fusion methods, such as those described
in Section IV-E. To this end, we train one model for each of
these fusion methods with T1, T2, and DWI as inputs, and
FLAIR as output on the ISLES dataset. We get the best MSE
with our max fusion method, which is equal to 0.171. HeMIS
MSE is 0.178, while latent and output mean follow with 0.187
and 0.193 respectively. We also experiment with missing inputs
with the HeMIS and latent mean fusion methods. On average,
across all seven input combinations, our model achieved an
MSE of 0.236 as shown in Table V, whereas HeMIS and latent
mean achieved 0.239 and 0.246 respectively, demonstrating
that the model still works well with missing inputs in these
cases, but performs best with our suggested fusion approach.

G. Non skull-stripped data
In these experiments we explore the model in situations

where the brain data has not been skull-stripped. As also
discussed in [9], synthesising non skull-stripped volumes is
difficult because of the intensity inhomogeneity in MR images
caused by the dark skull regions surrounded by bright skin and
fat regions. REPLICA [9], which is being used as a baseline
has been demonstrated to be effective on non skull-stripped
data, producing state of the art results, and we compare our
method with this approach for evaluation. For this experiment
we use 28 volume pairs of PD-weighted and T2 modalities
of the IXI dataset. The results are given in Table VI. As can
be seen, our method outperforms REPLICA, with statistical
significance, in all three error metrics. Non skull-stripped
example results are shown in Figure 9. Although we initially
used 28 subjects to be comparable to the ISLES dataset size,

Fig. 9. Non skull-stripped synthesis examples. The two rows show slices from
different test volumes. The columns show the input PD image, the ground
truth T2 image, the REPLICA synthetic T2 and our model’s synthetic T2
respectively. Our method can be seen to produce more accurate outputs.

TABLE VI. RESULTS FROM PD TO T2 SYNTHESIS ON THE NON
SKULL-STRIPPED IXI DATASET.

REPLICA [9] Proposed

MSE 0.293 (0.05) 0.129 (0.04)
SSIM 0.854 (0.03) 0.865 (0.03)
PSNR 28.93 (1.20) 32.92 (1.06)

to demonstrate that our model scales well and benefits from
more training data we trained our model on the full IXI dataset,
which consists of 577 volumes (347 training, 115 validation
and 115 testing). This significantly improved the performance
(compare with Table VI), with MSE dropping to 0.067, and
SSIM and PSNR rising to 0.872 and 35.20 respectively.

H. Augmenting inputs with segmentation masks
The ISLES dataset includes segmentation masks that delin-

eate unhealthy regions. We provide the segmentation mask as
an additional input channel. With this augmented input, the
model can directly modulate its behaviour on affected regions.
Specifically, when we train a network with DWI input and
FLAIR output, we obtain a MSE of 0.303. When we train
a similar network where the mask is provided as an extra
channel in the input, the MSE reduces to 0.290. Even though
the improvement is in the range of ≈ 3%, we observed that
affected regions in the synthesised images are sharper (also
note unhealthy regions are only a small part of a few volumes).

With the same augmented inputs, we can also generate
synthetic lesions. To achieve this at test time, we use the lesion
mask from an unhealthy brain on a healthy brain, and then
run the synthesis as normal. A visual example is shown in
Figure 10. We then train DeepMedic [25] to segment lesions
using the FLAIR modality of the ISLES dataset as input.
In order to test the quality of our synthetic images, we use
DeepMedic to segment the synthetic lesion and get ≈ 84%
accuracy (Dice coefficient) on a single test-case.

I. View-transfer synthesis
We demonstrate that our architecture can synthesise images

(at test time) taken from a different perspective of the 3D
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Fig. 10. Synthesis of a lesion by including a segmentation mask when
synthesising an otherwise healthy image. This subject is taken from ISLES
dataset in the FLAIR modality.

Fig. 11. A visual demonstration of robustness of our model to view transfer.
We take the model trained on axial-plane slices and test using coronal-
plane slices (shown). The image show the T1, T2 and DWI input slices, the
synthesised FLAIR slice, and the ground-truth FLAIR image respectively.

volume. Here, we train a model with T1, T2 and DWI inputs
and FLAIR output on axial-plane slices as normal, but we
test on coronal view slices. An example result is shown
in Figure 11. Observe that the synthetic image contains all
the details including the ischemic lesion, seen in the other
modalities and in the ground-truth FLAIR image, visually
demonstrating transfer learning capabilities w.r.t. the point of
views (axial-coronal planes in this example). Finally, as our
method synthesises volumes slice by slice, we evaluate inten-
sity consistency between slices in off-plane reconstructions. As
the examples in Figure 12 show, consistency is good.

VII. CONCLUSION

We proposed a multi-input, multi-output end-to-end deep
convolutional network for synthesis of MR images, capable
of fusing information contained in different modalities. Most
current synthesis approaches are single-input single-output and
thus do not take advantage of the correlated information avail-
able within clinical exams. We designed a modular architecture
composed of three parts: encoder, latent representation fusion,
and decoder. These modules are learnt end-to-end, using a
cost function that encourages representations to be modality-
invariant, whilst the individual reconstruction error is kept low.

Fig. 12. Off-plane reconstruction examples. The volume was constructed
by synthesising axial slices. Sagittal and coronal slices are taken from this
reconstructed volume and compared them to ground truth images. From left
to right, the images show a target T1 image, and the off-plane reconstruction,
a target FLAIR image, and the corresponding off-plane reconstruction.

When trained with a single input, our method outperforms
the current best methods in all three metrics in each experi-
ment. In particular, significantly outperforming in SSIM in all
experiments, and in all metrics on the BRATS dataset. We also
demonstrate improved performance on non skull-stripped brain
images compared to previous methods. When more inputs
are added, the error is further reduced, and our approach is
shown to outperform REPLICA statistically significantly in all
multi-input experiments. We also show in our experiments that
our architecture and cost function can be used in conjunction
with various fusion methods, including the one proposed in
HeMIS [26], and the model can be trained end-to-end without
the need for the added complexity of curriculum learning
[14]. We also demonstrate that the model is robust to missing
inputs: for any subset of inputs it performs as well as a model
trained specifically for the subset. Central to our design is the
quest towards modality-invariant latent representations. This
is achieved by via a cost function that aims to unearth shared
information whilst still preserving unique (to a specific input)
semantics. Such modality invariance has many benefits such
as the ability to train new decoders (as demonstrated in VI-E).

We used MSE, SSIM, and PSNR as evaluation criteria, but
these may not directly reflect diagnostic quality. Investigations
of new, useful for synthesis, metrics, is an ongoing process in
the community. Application-specific metrics are also sought-
after and our application driven DeepMedic-based evaluation
of pseudo-lesion synthesis points to that direction. This work
used three datasets independently, but there is potential for
combining information across many sources. This has bene-
fited deep learning in many domains: its application in our
context requires that we find suitable pre-processing schemes
to alleviate intensity distribution differences between the dif-
ferent sources. Finally, we opted for encoders/decoders that
were “small” and fast but still performed exceptionally well.
Fine-tuning their design could improve performance further.

Although our approach outperforms the baseline methods
in all three metrics, the images produced by LSDN appear
sharper than those produced by our method. We believe this
is a result of LSDN independently processing small 3× 3× 3
voxel cubes to predict a single output voxel. However, although
the LSDN approach promotes sharpness, the numerical results
show sharpness does not necessarily translate to accuracy: it is
certainly possible to have a very sharp, but inaccurate synthetic
output. This said, we believe that in future work steps could be
taken to improve sharpness of our model, for example through
the use of perceptual similarity metrics [39].

Finally, our work here considers co-registered data and
does not explore the effect of mis-registration between inputs.
Recent preliminary findings on low resolution data, using
a model similar to the one presented herein but with an
additional registration layer [13], show that it is possible to
add robustness to input misalignment.

In summary, we presented a multi-input, multi-output end-
to-end deep convolutional network for synthesis of MR images,
which we tested on three different brain datasets. We showed
that the model is robust, performs well and can handle a
variety of different challenges such as robustness to missing
input, learning just a new decoder for an unseen modality and
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even synthesising new (unseen) views of the data. We see that
such multimodal models could be well placed to impute data
on large databases (e.g. biobanks) w.r.t unimodal approaches.
From a deployment perspective they are less complex (one
vs many different models to deploy/maintain), more flexible
(new outputs can be added with minimal training) and more
importantly are robust by taking advantage of information
across input modalities, without being reliant on any of them.
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