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Abstract. Brain ageing is associated with morphological changes and
cognitive degeneration, and can be affected by neurodegenerative dis-
eases which can accelerate the ageing process. The ability to separate
accelerated from healthy ageing is useful from a diagnostic perspective
and towards developing subject-specific models of progression. In this
paper we start with the ‘simpler’ problem of synthesising age-progressed
2D slices. We adopt adversarial training to learn the joint distribution
of brain images and ages, and simulate aged images by a network condi-
tioned on age (a continuous variable) encoded as an ordinal embedding
vector. We introduce a loss to help preserve subject identity despite that
we train with cross-sectional (unpaired) data. To evaluate the quality of
aged images, a pre-trained age predictor is used to estimate an appar-
ent age. We show qualitatively and quantitatively that our method can
progressively synthesise realistic brain images of different target ages.
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1 Introduction

Brain ageing is a complex process characterised by morphological and cognitive
changes over a subject’s lifespan. This process is influenced by age [18], neu-
rodegenerative disease(s) [8], gender [9], education [4], and other factors. The
separation of these factors is of great value for research and clinical applications
to detect early stages of degenerative diseases [6, 13]. One approach to achieve
this separation task is to simulate the ageing process w.r.t. different factors, i.e.
synthesise brain images given different factors as input [2, 13]. In this paper, we
focus on synthesising brain images conditioned on age.

One challenge with brain ageing synthesis is inter-subject variation, i.e. dif-
ferent individuals have different brain ageing trajectories. Previous studies used
regression [7, 13] to learn population models, which only represented the aver-
age brain images of different ages. However, this approach may not traverse a
subject-specific ageing trajectory [4]. Another challenge is lack of diverse longi-
tudinal data, since it is difficult to acquire brain images of the same subject at
different ages hindering the use of supervised learning.
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Fig. 1. Left: The network synthesises an image xto of age to from input xti , conditioned
on vector vd , derived by ordinal encoding of age difference d = to− ti. Right: Top row
shows the synthetic output at different age. Observe the progressive change between
input and output (highlighted in bottom row).

In this paper, we overcome these challenges by proposing an adversarial deep
neural network that learns the joint distribution of age and brain images. We in-
troduce, and motivate, a loss function that helps preserve the identity of the sub-
ject –a classical problem in synthesis with cross-sectional (unpaired) data [23]–
and induces progressively modulated changes on the brain. A simplified illustra-
tion of the proposed network and some example results are presented in Fig. 1.
Given a brain image and a vector representing the target age difference, our
method can synthesise it at an older age. For quantitative evaluation, we train
a VGG-like network [17] as an age estimator to predict apparent age given an
image. The estimated age is used as a proxy metric to evaluate the quality of
output images in terms of age accuracy. We compare our method with condi-
tional GAN [14] and CycleGAN [22]. The results show that we outperform these
baselines in terms of age accuracy, and we consistently synthesize visually real-
istic images. Contributions:
1. We model ageing progression as a conditional network that is trained adver-
sarially from cross-sectional (unpaired) data.
2. An age embedding mechanism that is used for synthesis and to teach an ad-
versary to learn the joint distribution of age and brain appearance.
3. A regularisation loss to preserve age-modulated subject identity.

2 Related work

Brain ageing: Previous studies can be classified as: prediction (where ages are
predicted from brain images) and simulation (where brain images are synthe-
sised given age as input) [23]. For prediction, convolutional neural networks [5]
and Gaussian Process Regression [6] have been used to estimate ages from MRI
images as a marker for detecting neurodegenerative diseases. For simulation, [13]
used partial regression to learn a model which represents the mean morphological
change with age, while [7] proposed a regression method to learn a longitudinal
growth model to synthesise population-average brain images of different ages.
However, these regression-based methods did not consider subject-specific sim-
ulation and their performance was limited by the use of hand-crafted features.
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Adversarial networks: GANs have been widely used in medical image synthe-
sis, with [3] converting MR to CT images and [1, 21] synthesising healthy images
from pathological ones. However, these approaches focused on translating images
between different discrete states, and did not model a continuous time progres-
sion. The progression of Alzheimer’s Disease (AD), was approached by [2] with
image arithmetic. They synthesised images from random latent vectors and sim-
ulated AD progression using linear interpolation in latent space. However, they
assumed a linear progression of the disease and did not address the problem of
identity preservation. Instead, we directly model age progression, as a non-linear
process [18], and focus on preserving subject identity.

3 Methods

3.1 Problem overview and notation

We denote a brain image as xt of age t, and the distribution of brain images of
age t as Xt, such that xt ∼ Xt. Our goal is to synthesise a brain image x̂to of
desired age to given an input image xti of age ti conditioned on the age difference
d between input and output d = to − ti, to ≥ ti. The objective is to generate
x̂to that is realistic (i.e. the distribution X̂to of output images x̂to matches the
data distribution Xto) and retains the ‘identity’ of the subject throughout the
ageing process. The contribution of our approach, shown in Fig. 2, is the design
of the conditioning mechanism, a loss to preserve age-modulated identity and an
adversary that learns the joint distribution of age and brain appearance.

3.2 Model

Ordinal encoding of age: we use ordinal vectors to encode age (a continu-
ous variable), to ensure that the mean absolute error between two age vectors
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Fig. 2. Proposed method (training). xti is the input image of age ti ; x̂to is the output
(aged) image (supposedly of the same subject as xti ) at the age to ; vto is the target age
vector representing age to and vd is the difference age vector corresponding to d = to−ti .
The Generator takes as input xti and vd , and outputs x̂to ; the Discriminator takes as
input an image and a target age vector, and outputs a Wasserstein score.
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positively correlates with age difference [11]. Assuming a max age of 100, we
use a 100-d vector vt to encode age t, where the first t elements are 1 and the
rest are 0. (Fig. S3, in the supplemental, shows the benefit of ordinal vs. one-hot
encoding.)
Model: Our model consists of a Generator and a Discriminator, shown in Fig. 2.
These are detailed below. Note images xti , x̂to and yto represent the input, the
aged output and a real older brain image from another subject, respectively.
Generator: ‘G ’ takes as input a 2D brain image xti and an ordinal age vector
vd (d = to − ti), and outputs a 2D older image x̂to . We condition on vd such that
when input and output ages are equal (d = 0) the network is drawn to recreate its
input. This works in synergy with our identity-preserving loss described below.

The Generator consists of three subnetworks: ‘Encoder ’ EG , ‘Transformer ’
TG, and ‘Decoder ’ DG. EG extracts latent features Fe1 from input xti : Fe1 =
EG(xti). TG outputs a feature map Fe2 = TG(Fe1, vd) by first transforming Fe1

to a bottleneck vector ce1, and by concatenating ce1 with vd. To keep networks
parameters low we empirically set the size of ce1 to 130. Afterwards, to preserve
information of xi, and achieve accurate synthetic results, we introduce a skip
connection between Fe1 and Fe2 : Fe3 = cat(Fe1 ,Fe2 ), where cat(·) concate-
nates the elements of the given tensors along the channel dimension. Finally, the
Decoder DG synthesises the aged output x̂t from Fe3. x̂to should manifest the
characteristics of brains at age to whilst preserving the identity of input xti , i.e.
x̂to should be the brain image of the same subject as xti at age to .
Discriminator: D contains an Encoder ED and a Transformer TD to condition
on target age and a Judge JD to output a discriminator score. Note here we
condition on vto , instead of vd, to learn the joint distribution of brain appearance
and age, such that it can discriminate real vs. synthetic images of correct age.

To summarise, the forward pass for the Generator is x̂t = G(xti , vd), and for
the Discriminator is wfake = D(x̂to , vto ) and wreal = D(yto , vto ).

3.3 Adversarial and identity-preserving training losses

The overall training loss is defined as:

L = max
G

min
D
LGAN + min

G
λIDLID,

where LGAN is the GAN loss , LID is an age-modulated identity-preserving loss
and λID = 100 the weight of LID. LGAN pushes the solution towards realistic
images of correct age, whereas LID pushes towards subject-specific synthesis.
LGAN is a Wasserstein loss with gradient penalty for stable training [10]:

LGAN = Eyto∼Xto ,x̂to∼X̂to
[D(yto , vto )−D(x̂to , vto ) + λGP (‖∇z̃to

D(z̃to)‖2 − 1)2],

where z̃t is the average sample defined as z̃t = εx̂t + (1− ε)yt , ε ∼ U [0, 1]. First
two terms measure the Wasserstein distance between real and fake samples; last
term is the gradient penalty. As in [10] we set λGP = 10.
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(a)	Trajectories	of	ageing	progression	of	two	subjects (b)	Ablation	study	on	identity	loss		8#(

Age

Fig. 3. Left: Illustration of ageing trajectories for two subjects showing that for an
input image of age t1 (A), the network may learn a mapping from A to C, which can
still fool the Discriminator but lose the identity of Subject 1. Right: When LID is not
used (top two rows) image differences are large (2nd row) and identity is lost, implying
that we have an A to C potential mapping (left panel). In contrast, when LID is used
(bottom two rows) changes are smooth and consistent (observe the gradually enlarging
ventricles, 3rd row) and differences appear progressive (4th row).

LID defends against loss of identity, due to lack of longitudinal data and use of
LGAN. We offer an illustration in Fig. 3 as motivation, where we show ageing
trajectories for two subjects and 3 points A,B and C. We want to ‘age’ subject 1
of initial age t1 (point A) to age t2 (point B), but we do not have ground truth
to ensure we stay on the trajectory (of subject 1). Instead, as training data we
have images of subject 2 (and of many others) of age t2 (point C). Without
any restrictions, the Generator may learn a mapping from A to C to fool the
Discriminator. This will break the identity of subject 1. To alleviate this and
encourage mappings from A to B (ie. along the trajectory), we adopt:

LID = Exti∼Xti
,x̂to∼X̂to

‖xti − x̂to‖2 · e
− |to−ti |
|tmax−tmin | ,

where tmax and tmin are the maximal and minimal age in the training dataset,

respectively. The regularisation e
− |to−ti |
|tmax−tmin | = e

− |d|
|tmax−tmin | captures that if age

difference is small, then the change between xti and x̂to should also be small. In
the special case of d = 0 it pushes the solution to reconstruct (auto-encode) the
input (ie. xti ≈ x̂to ). Right panel of Fig. 3, demonstrates the importance of this
loss, via an ablation on training the network without and with LID .

4 Experiments

4.1 Experimental setup

Dataset and preprocessing: We apply our 2D method on two datasets. We
use the Cam-CAN [19] and ADNI datasets [15]. For each dataset, we use FSL [20]
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Fig. 4. Example results of synthetically aged brain images. Two slices of subjects with
age 27, and synthetically aged outputs at different target ages (rows 1 and 3) are shown.
The difference (rows 2 and 4) between input and output demonstrates progression.

to perform brain extraction and volumetric registration to MNI 152 space. We
normalise the resulting intensities to [-1,1]. For every 5-year span, we select 38
volumes with 30 used for training and 8 for testing. Thus, there are 360 training
and 96 testing volumes for CAM-CAN, and 240 training and 64 testing volumes
for ADNI. We select the middle 60 axial slices from each volume and use these
2D slices to perform experiments.

Baselines: We set up 2 baselines with conditional GAN [14] and CycleGAN [22].
Since both frameworks only translate images between two discrete styles, for
each dataset, we train different models for transforming the youngest group to
different target age groups (where each group covers 10 years).

Implementation details: The method is implemented in Python using Keras
(https://keras.io). The Generator is a U-net [16] with the bottleneck layer mod-
ified to be a Transformer. The Discriminator is a ResNet [12] with a latent layer
modified as Transformer. The detailed structures are shown in Supplemental.

Evaluation metric: Due to lack of sufficient longitudinal data, it is hard to
evaluate the synthetic output. As a proxy, we train an age predictor, fpred , to
estimate apparent age of outputs, and use the estimated age to evaluate age
accuracy, i.e. how close the output is to the desired target age. The age predictor
is a VGG-like network [17] with mean absolute error of 3.2 years on training
dataset and 5.3 years on testing (detailed structure in supplemental). Formally,
we use predicted age difference (PAD): PAD = Exti∼Xti

|fpred(G(xti , vto−ti ))−to|.

4.2 Experiments and results

Ageing progression: We visualise differences between input and output im-
ages in Fig. 4 for two subjects (more results in the supplemental, including higher
zoom to show sharpness). Observe that the output gradually changes as age in-
creases. At an early stage, the brains do not change much. After around age 52,
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Table 1. Testing test (N = 480 images) PAD results (defined in section 4.2) on Cam-
CAN and ADNI of proposed and baseline methods. Best values shown in bold. Paired
t-tests (5% level) between our method and the best baseline are significant.

Cam-CAN ADNI

Target Age (30,40) (40, 50) (50, 60) (60, 70) (70, 80) (60, 70) (70,80) (80,90)

conditional GAN 13.5±6.2 11.3±5.4 9.3±5.1 10.4±4.7 9.5±5.2 10.3±4.7 9.3±4.5 8.9±4.9

CycleGAN 12.7±7.2 11.5±6.3 9.5±5.4 9.4±6.4 9.7±5.8 9.6±5.4 9.8±4.7 9.6±5.2

Proposed method 7.2±3.4 6.1±3.6 4.6±3.2 4.3±3.1 4.1±3.5 4.6±3.1 5.4±3.6 4.9±3.8

ageing is accelerated. This observation is consistent with [18], implying that our
method captures known age-modulated changes in the brain.

Comparison with baselines: We apply the pre-trained age predictor to quan-
titatively evaluate the proposed method and compare it with baselines. The re-
sults for each age group are shown in Table 1. Conditional GAN and CycleGAN
are trained as described in Section 4.1, to synthesise images of a particular group.
Instead, our method can generate images of any age. Therefore, in order to make
it comparable with the baselines, we use the middle age of each group as the
target age. The quantitative results show that our method, can achieve more
age-consistent output compared to the baselines. The higher PAD in the early
stage (before age 50) could be caused by the slow rate of brain ageing, i.e. when
ageing process is slow, prediction becomes more difficult.

Longitudinal evaluation: We also evaluated our method using a small number
(15) of follow-up studies from ADNI which start from an age between 55-60 years
and end at an age larger than 60. The MAE between the ground-truth images
and predicted aged images are 0.08, 0.21 and 0.20 for proposed model, condi-
tional GAN and CycleGAN, respectively. These results show that our method
synthesizes realistic aged images and preserves subject identity well.

5 Conclusion

We proposed a deep adversarial neural network to model brain ageing. The
method learns the joint distribution of age and brain morphology. We also pro-
posed a loss to encourage the preservation of subject identity. Due to lack of
longitudinal data, quantitative evaluation of synthetic images remains challeng-
ing. Here, we used an age predictor to predict apparent age of output images as
a proxy to evaluate quality. Both qualitative and quantitative results show that
our method can smoothly and consistently simulate subject-specific ageing.

We evaluated on 2D healthy brain images. As future work, we envision involv-
ing 3D data and other factors (e.g. gender). A longitudinal and diverse dataset
with large age span will be ideal for evaluation, however, this is currently lacking
as a community resource.
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