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Abstract—We propose a novel adaptive kernel-based regression
method for complex-valued signals: the generalized complex-
valued kernel least-mean-square (gCKLMS). We borrow from
the new results on widely linear reproducing kernel Hilbert
space (WL-RKHS) for nonlinear regression and complex-valued
signals, recently proposed by the authors. This paper shows that
in the adaptive version of the kernel regression for complex-
valued signals we need to include another kernel term, the
so-called pseudo-kernel. This new solution is endowed with
better representation capabilities in complex-valued fields since
it can efficiently decouple the learning of the real and the
imaginary part. Also, we review previous realizations of the
complex KLMS algorithm and its augmented version to prove
that they can be rewritten as particular cases of the gCKLMS.
Furthermore, important conclusions on the design of the kernels
are drawn that help to greatly improve the convergence of the
algorithms. In the experiments, we revisit the nonlinear channel
equalization problem to highlight the better convergence of the
gCKLMS compared to previous solutions. Also, the flexibility
of the proposed generalized approach is tested in a second
experiment with non-independent real and imaginary parts. The
results illustrate the significant performance improvements of
the gCKLMS approach when the complex-valued signals have
different properties for the real and imaginary parts.

Index Terms—LMS, complex-valued, RKHS, kernel methods.

I. INTRODUCTION

COMPLEX-VALUED signals model many systems in di-
verse applications such as electromagnetism, telecommu-

nications, optics or acoustics, among others. Complex-valued
signal processing is thus of fundamental interest as it provides
a natural way to represent some signals and transformations
involved in those systems. While the linear case has been
widely studied (see for example [1] and references therein),
nonlinear processing still remains an open problem. Nonlinear
processing of complex-valued signals has been tackled, among
others, from the point of view of neural networks [2], [3],
nonlinear adaptive filtering [4], or reproducing kernel Hilbert
spaces (RKHS) [5]. This latter field is gaining increasing
interest within the signal processing community as it provides
a simple but elegant way to treat nonlinearities. Complex
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kernel-based algorithms have been lately proposed for regres-
sion [6], [7], [8], kernel principal component analysis [9] or
classification [10].

Regarding complex-valued regression within the RKHS
framework, we have recently highlighted in [11] the need
of a new term: the pseudo-kernel. We redefined the kernel-
based regularized least squares regression to include the
pseudo-kernel, and the resulting structure resembles that of
the widely linear (WL) solutions, being capable of learning
any complex-valued function effectively. As discussed in [11],
the need for a pseudo-kernel can be justified in cases where
the real and imaginary parts are correlated and learning them
independently is, at best, suboptimal. Also, a pseudo-kernel
is needed when the real and imaginary parts are not best
represented by the same kernel, i.e., the same measure of
similarity. Furthermore, we analyzed in [11] the structure of
the kernel and pseudo-kernel, and discussed how to design
these functions, and when should they be real or complex-
valued. As a result, two important remarks were made. First, if
the real and imaginary parts of the output are independent, then
the kernel and pseudo-kernel should be real-valued. Second,
if the real and imaginary parts of the output have different
properties in terms of similarity, the pseudo-kernel is needed.
On the contrary, the pseudo-kernel vanishes if the real and
imaginary parts of the output are independent but have the
same properties in terms of similarity, i.e., the same kernel
can be used for the real and imaginary parts.

The complex kernel least-mean-square (CKLMS) allows
for an adaptive version of the RKHS techniques. In the
literature, there are several proposals for CKLMS algorithms.
The authors in [6] address the problem of adaptive filtering of
complex signals and calculate the gradient of cost functions by
using Wirtinger’s derivatives. Two alternatives are described.
The first alternative, denoted by CKLMS1, uses real kernels
developed by means of the complexification technique of real
RKHSs. The second one, the CKLMS2, proposes the use of
complex kernels, in particular, the complex Gaussian kernel
[10]. With these two alternatives, they develop two realizations
of the kernel least-mean-square (KLMS) algorithm [12] for
complex signals. The same complex Gaussian kernel is also
adopted in [13] and in [14]. Augmented or WL filters consider
both the original values of the signal data and their conjugates
[15]. In [14], the authors introduce WL adaptive filters to de-
velop an augmented version of the complex KLMS algorithm,
the ACKLMS. In the light of the theoretical framework in
[11], in this paper we review these results on the CKLMS to
propose a new approach, as follows.
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Previous augmented or WL versions of the complex KLMS
use limited feature mappings. The KLMS algorithm [12]
considers a linear input-output mapping but on the transformed
inputs by using the feature map, ŷ = 〈Φ(x),w〉. For the
ACKLMS algorithm [14] they propose to use a WL model
with two linear terms, one with the feature map transforma-
tion and the other with the conjugate of this transformation:
ŷ = 〈Φ(x),w〉 + 〈Φ(x)∗,v〉. We propose a richer way
to represent this model leading to improved results on the
adaptive regression task for complex-valued signals. This is
the representation of a complex-valued function as a two-
dimensional real-valued vector function obtained by stacking
the real part on top of the imaginary part. From the theory
of kernels for learning vector-valued functions [16] we are
able to propose a suitable feature map transformation in this
composite representation.

By exploiting this composite feature map, we can set a linear
input-output mapping on the transformed inputs to derive the
KLMS algorithm for the composite representation. This is
the second contribution of the paper. In this new composite
KLMS algorithm we prove that the kernel should be matrix-
valued. Once the algorithm has been developed in composite
representation we develop its complex value representation,
which is the third and central contribution of this paper.
This is an augmented or WL version of the CKLMS. To
avoid confusion with previous proposals we denote it by
generalized CKLMS (gCKLSM). It has both a kernel and
a pseudo-kernel, in accordance with the general theory for
complex RKHS in [11]. This representation exhibits better
reproducing capabilities than previous approaches [17], [18],
[19], [14]. Furthermore, we show that these previous proposals
are particular cases of the gCKLMS.

The right design of the kernel and the pseudo-kernel is
important to properly model the system. As a final contribution
we analyze different options and explain their implications.
The kernel and pseudo-kernel in the gCKLSM have the same
structures introduced in [11], this is our starting point to
enhance the performance of the gCKLMS. These results can
also be used to improve previous proposals.

This paper is organized as follows. We devote Section II
to review the theory of learning in RKHS of vector-valued
functions [16] as a way to find a suitable feature map trans-
formation. In Section III we use the feature map to develop
the KLMS algorithm for the composite representation. The
formulation for the gCKLMS algorithm is found in Section IV.
In this section we also show the equations for the kernel and
pseudo-kernel terms. In Section V we compare the gCKLMS
with other complex KLMS algorithms in the literature to show
that they are particular cases of the gCKLMS. Experiments are
included in Section VI, where the gCKLMS algorithm is tested
first in the context of a nonlinear channel equalization task, and
then in the learning of samples of a filtered random process.
These experiments show that the gCKLMS outperforms other
KLMS algorithms because it takes advantage of having both
the kernel and the pseudo-kernel. We end the paper with some
conclusions in Section VII.

In the notation used throughout the paper, bold lower-
case letters are used to denote vectors, while matrices are

denoted using bold upper-case letters. For matrix A, [A]l,q
is its (l, q) entry. To denote the i-th sample of a vector or
signal we use, respectively, a(i) and a(i). R{a} is the real
part of a. Transpose operation is represented by >, while H

represents the Hermitian and ∗ complex conjugation. E[·] is
the expectation operator.

II. RKHS OF COMPOSITE VECTOR-VALUED FUNCTIONS

A complex function f(x) = fr(x) + jfj(x) can be rep-
resented as a composite vector-valued function fR(x) =
[fr(x) fj(x)]> ∈ R2, also known as the dual real channel
(DRC) formulation, by stacking its real part on its imaginary
part. The definition of the RKHS for vector-valued functions
[16] parallels the one for scalar functions [20], with the main
difference that the reproducing kernel is now matrix-valued
[21], [16].

Let H be a Hilbert space of functions f on a set X with
values in Y . H is a RKHS when for any x ∈ X and any y ∈ Y
the linear functional which maps f to (y, f(x))Y is continuous
on H [16]. Here, (·, ·)Y represents the inner product in the
Hilbert space Y , while 〈·, ·〉H is the inner product in H.

From the Riesz Lemma, for every x ∈ X and y ∈
Y there is a linear operator Kx : Y → H, such that
(y, f(x))Y = 〈Kxy, f〉H. Let us now introduce the linear
operator K(x,x′) : Y → Y , for every x,x′ ∈ X , defined
by K(x,x′)y := (Kx′y)(x).

We say that K : X × X → L(Y), where L(Y) denotes
the set of all bounded linear operators from Y to itself, is a
matrix-valued kernel [16] (or operator-valued kernel if Y is not
finite dimensional [22]) if it satisfies the following properties
for every x,x′ ∈ X :
(a) For every y,y′ ∈ Y , we have (y,K(x,x′)y′)Y =
〈Kxy,Kx′y′〉H.

(b) K(x,x′) = K̄(x′,x), and K(x,x) ∈ L+(Y), where K̄
denotes the adjoint and L+(Y) the set of all positive semi-
definite bounded linear operators, i.e., (y,K(x,x)y)Y >
0 for any y ∈ Y .

(c) For any positive integer m, we have that∑
l,q∈{1,··· ,m}(yq,K(xq,xl)yl)Y > 0, for any

xl,xq ∈ X , yl,yq ∈ Y .
Proof of these properties can be found in [16]. Also, it can be
shown that if K is a kernel then there exists a unique (up to
an isometry) RKHS of functions from X to Y which admits
K as the reproducing kernel.

In the case of Y = R2, the kernel function K takes values
as 2× 2 matrices and, from property (a), the matrix elements
can be found as:

[K(x,x′)]l,q = 〈Kxel,Kx′eq〉H, (1)

where el, eq are the standard coordinate bases in R2, for
l, q ∈ {1, 2}.

A. Feature map

We next define a suitable feature map representation for the
matrix-valued kernel that will be later useful in deriving the
gCKLMS algorithm.
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Every kernel K admits a feature map representation. A
feature map is a continuous function φ : X → L(Y,W),
where L(Y,W) denotes all bounded linear operators from Y
into the feature Hilbert space W [22]. If φ̄(x) is the adjoint
of φ(x), it is in L(W,Y), then

K(x,x′) = φ̄(x)φ(x′), (2)

for any x,x′ ∈ X .
In the case of finite dimensional Hilbert spaces Y = R2 and

W = Rm, relative to standard basis of both spaces φ(x) is a
m× 2 matrix. Each entry of this matrix, [φ(x)]p,q = φpq(x)
is a scalar-valued continuous function of x ∈ X , and each
entry of the kernel is

[K(x,x′)]l,q =
∑

i∈{1,··· ,m}

φil(x)φiq(x′). (3)

Note that when Y = R, then φ(x) ∈ W , but this is not the
case here.

III. THE COMPOSITE KLMS ALGORITHM

Consider the training sequence of input-output pairs
{(x(1), y(1)), ..., (x(N), y(N))} where y(n) ∈ C and x(n) ∈
Cd. The goal is to uncover the underlying complex-valued
function f(x(i)) based on these examples, so that to minimize
the mean square error J = E[|y(i) − f(x(i))|2] = E[|e(i)|2].
By using the composite notation, this can be written as

J = E[|e(i)|2] = E[(yr(i)− fr(x(i)))
2

+ (yj(i)− fj(x(i)))
2
]

= E[(yR(i)− fR(x(i)))
>

(yR(i)− fR(x(i)))], (4)

where fR(x) = [fr(x) fj(x)]> and yR = [yr yj]
>.

The least-mean-square (LMS) algorithm would consider a
linear input-output mapping, i.e., f(x(i)) = wHx(i), and
compute the weight vector w adaptively using stochastic
gradient descent updates [23]. However, instead of a direct
linear input-output mapping, the KLMS [12] is performed on
the transformed inputs by using the feature map. We propose
here to use the composite notations and the theory for RKHS
of composite vector-valued functions described in the previous
section. Therefore, we use the feature map φ : X → L(Y,W)
and set fR(x) = φ̄(x)w, where w ∈ W .

Note that in the general case W could be an infinite
dimensional Hilbert space. For the particular case ofW = Rm,
since Y = R2 then φ(x) = [Φr(x) Φj(x)] is an m × 2
matrix, where Φr(x) and Φj(x) are its first and second column,
respectively, and φ̄(x) = φ>(x):

fR(x) =

[
fr(x)
fj(x)

]
= φ>(x)w =

[
Φ>r (x)

Φ>j (x)

]
w. (5)

The objective is now the minimization of

J(w) = E
[(

yR(i)−φ>(x(i))w
)>(

yR(i)−φ>(x(i))w
)]
.

(6)

It is easy to show that the gradient is

∂J(w)

∂w
= −2E

[
φ(x(i))

(
yR(i)−φ>(x(i))w

)]
= −2E[φ(x(i))eR(i)], (7)

and the update equation for w using the stochastic gradient
yields

w(i) = w(i− 1) + 2µφ(x(i))eR(i). (8)

If we set w(0) = 0, the repeated application of the weight-
update equation (8) yields

w(i) = 2µ

i∑
l=1

φ(x(l))eR(l). (9)

At instant i the output can be estimated using the last updated
weights, w(i− 1), as ŷR(i) = fR(x(i)) = φ>(x(i))w(i− 1).
Therefore, the input-output operation of the composite KLMS
algorithm can be expressed as

ŷR(i) = φ>(x(i))w(i− 1)

= 2µ

i−1∑
l=1

φ>(x(i))φ(x(l))eR(l)

= 2µ
i−1∑
l=1

K (x(i),x(l)) eR(l), (10)

where the matrix-valued kernel yields:

K(x(i),x(l)) = φ>(x(i))φ(x(l))

=

[
Φ>r (x(i))

Φ>j (x(i)

] [
Φr(x(l))Φj(x(l))

]
=

[
Φ>r (x(i))Φr(x(l)) Φ>r (x(i))Φj(x(l))

Φ>j (x(i))Φr(x(l)) Φ>j (x(i))Φj(x(l))

]
=

[
krr(x(i),x(l)) krj(x(i),x(l))
kjr(x(i),x(l)) kjj(x(i),x(l))

]
. (11)

Notice that this kernel matrix follows the structure introduced
in [11] for the WL-RKHS, and is composed of four scalar real
functions.

IV. THE PROPOSED GENERALIZED COMPLEX KLMS
ALGORITHM

Any real-valued composite vector representation yR =
[y>r y>j ]> ∈ R2n of any complex-valued vector y = yr +
jyj ∈ Cn, can be related to the complex augmented vector
y = [y> yH]> ∈ C2n representation, which is obtained by
stacking y on top of its complex conjugate y∗. The relation
is y = TnyR, where

Tn =

[
I jI
I−jI

]
∈ C2n×2n, (12)

which is a unitary matrix up to a factor of 2: TnTH
n =

TH
nTn = 2I, where I is the identity matrix.
We can now apply this relation to (10) to calculate:

ŷ(i) =

[
ŷ(i)
ŷ∗(i)

]
= T1ŷR(i) = T12µ

i−1∑
l=1

K(x(i),x(l))eR(l)

= 2µ

i−1∑
l=1

T1K(x(i),x(l))

(
1

2
TH

1 T1

)
eR(l)

= µ

i−1∑
l=1

KA(x(i),x(l))e(l). (13)
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Here we have the augmented error vector e(l) = T1eR(l) =
[e(l) e∗(l)]>, and the augmented kernel matrix

KA(x(i),x(l)) = T1K(x(i),x(l))TH
1

=

[
k(x(i),x(l)) k̃(x(i),x(l))

k̃∗(x(i),x(l)) k∗(x(i),x(l))

]
, (14)

where by using (11) the complex kernel and complex pseudo-
kernel can be identified, respectively, as

k(x(i),x(l)) = krr(x(i),x(l)) + kjj(x(i),x(l))

+ j (kjr(x(i),x(l))− krj(x(i),x(l))) , (15)

k̃(x(i),x(l)) = krr(x(i),x(l))− kjj(x(i),x(l))

+ j (kjr(x(i),x(l)) + krj(x(i),x(l))) . (16)

Notice that this kernel and pseudo-kernel follow the structure
introduced in [11].

The first entry of ŷ(i) in (13) yields the proposed general-
ized complex KLMS (gCKLMS):

ŷ(i) = µ

i−1∑
l=1

e(l)k(x(i),x(l)) + µ

i−1∑
l=1

e∗(l)k̃(x(i),x(l)).

(17)

V. CONNECTION WITH OTHER ALGORITHMS

In [6], two realizations of the complex-valued KLMS
(CKLMS) algorithm were developed by following two
methodologies. The first approach is based on using a
complex-valued kernel for a complex RKHS through the
associated feature map. In this approach, denoted in [6] as
CKLMS2, the output yields:

ŷ(i) = µ

i−1∑
l=1

e(l)k(x(i),x(l)). (18)

The second alternative is the complexification of real RKHSs.
In this approach, the space of complex-valued functions
f(x) = f1(x) + jf2(x) is defined from functions f1(x) and
f2(x) that are in a RKHS of real functions with real kernel kR.
Then, the complexified real kernel trick allows to construct a
kernel adaptive algorithm denoted in [6] as CKLMS1:

ŷ(i) = µ

i−1∑
l=1

2e(l)kR(x(i),x(l)). (19)

Notice that the kernel used in this CKLMS1 algorithm is a
real-valued function.

In [14] the framework of [6] is applied to develop widely
linear adaptive filters in complex RKHS. Two realizations of
the augmented CKLMS (ACKLMS) were proposed. First, by
using the complexification approach they obtain exactly the
same formula (19) for the CKLMS1 algorithm (except for a
rescaling) [14]. On the other hand, when a pure complex-
valued kernel is used, the ACKLMS algorithm yields

ŷ(i) = µ

i−1∑
l=1

(e(l)k(x(i),x(l)) + e(l)k∗(x(i),x(l))) . (20)

At this point it is interesting to note that (20) and (19) are the
same. If we take e(l) as a common factor in (20), it follows:

ŷ(i) = µ

i−1∑
l=1

e(l) (k(x(i),x(l)) + k∗(x(i),x(l)))

= µ

i−1∑
l=1

2e(l)R{k(x(i),x(l)} . (21)

Hence (20) and (19) provide the same learning process, since
in both cases the kernel is real. In fact, they yield the same
formula with R{k} = kR.

Next, we show that algorithms CKLMS1, CKLMS2 [6],
and ACKLMS [14] are particular cases of our proposed
gCKLMS algorithm in (17). They yield a subset of the cases
the gCKLMS algorithm presented in this paper can represent.

First, these approaches do not have a pseudo-kernel term,
therefore they provide simplified limited versions and hence a
reduction on the flexibility the general algorithm provides. It is
easy to check that if we set the pseudo-kernel equal to zero in
(17) the gCKLMS reduces to the CKLMS2 in (18). However,
to have k̃(x(i),x(l)) = 0 in (16) the following conditions
must be satisfied:

krr(x(i),x(l)) = kjj(x(i),x(l)),

kjr(x(i),x(l)) = −krj(x(i),x(l))), (22)

and the kernel in (15) for the CKLMS2 algorithm yields

k(x(i),x(l)) = 2krr(x(i),x(l))− j2krj(x(i),x(l)). (23)

Second, if in addition to k̃(x(i),x(l)) = 0 we now set
krj(x(i),x(l)) = 0, then the kernel in (23) becomes a real-
valued function k(x(i),x(l)) = 2krr(x(i),x(l)), and the
gCKLMS simplifies to the CKLMS1 in (19) or the ACKLMS
in (21).

A. Kernel design

The conditions that the algorithms impose on the kernel
and pseudo-kernel terms must be carefully analyzed in order
to choose the best algorithm and kernels for a given learning
problem.

The kernel in an RKHS learning algorithm encodes our
assumptions about the function that is being learned [5] and
provides a measure of similarity between the inputs. In [11] the
kernel and pseudo-kernel in (15)-(16) are analyzed, and several
remarks are provided to help to design them and to decide
when they should be real or complex-valued. We use that
analysis here to understand the implications of the conditions
that each algorithm imposes.

We start with the conditions imposed when the pseudo-
kernel is null, i.e., the conditions in (22) that yield the
complex-valued kernel in (23). For any two inputs x and
x′, the first condition krr(x,x

′) = kjj(x,x
′) implies that the

same measure of similarity must be used with the real and the
imaginary parts of the function [11]. Hence, if we impose a
null pseudo-kernel, we cannot use a kernel for the real part,
krr(x,x

′), and another different design for the imaginary part,
kjj(x,x

′). The second condition is kjr(x,x
′) = −krj(x,x

′).
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TABLE I
CONDITIONS IMPOSED ON THE KERNEL (15) AND PSEUDO-KERNEL (16) BY THE ALGORITHMS

Algorithm Kernel Pseudo-kernel Conditions
gCKLMS k(x,x′) = krr(x,x′) + kjj(x,x

′) + j
(
kjr(x,x

′)− krj(x,x
′)
)

k̃(x,x′) = krr(x,x′)− kjj(x,x
′) + j

(
kjr(x,x

′) + krj(x,x
′)
)

krj(x,x
′) = −krj(x

′,x)

CKLMS2 k(x,x′) = 2krr(x,x′)− j2krj(x,x
′) k̃(x,x′) = 0 krr(x,x′) = kjj(x,x

′), kjr(x,x
′) = −krj(x,x

′)
ACKLMS/CKLMS1 k(x,x′) = 2krr(x,x′) ∈ R k̃(x,x′) = 0 krr(x,x′) = kjj(x,x

′), kjr(x,x
′) = −krj(x,x

′) = 0

But we also have kjr(x,x
′) = krj(x

′,x), because the matrix-
valued kernel K(x,x′) in (11) must be positive semi-definite
(property (c) in Section II). Therefore, krj(x,x

′) = −krj(x
′,x)

and krj(x,x) = kjr(x,x) = 0. This imposes a skew-symmetry
in the measure of similarity between the real and the imaginary
parts of the function.

As an example, the complex Gaussian kernel proposed in
[6] for the CKLMS2 algorithm:

kCG(x,x′) = exp
(
−(x− x′∗)>(x− x′∗)/γ2CG

)
, (24)

follows the form given in (23) and fulfils the conditions in (22),
i.e., the symmetries that yield a null pseudo-kernel. However,
this kernel measures similarities between the real parts of the
inputs with ||xr − x′r||2, while for the imaginary ones it uses
||xj+x′j ||2, where ||·|| is the `2-norm. Also, it is not stationary,
has an oscillatory behavior, and the exponent in the kernel
may easily grow large and positive [24]. This might cause
numerical problems and, as we show later in the experiments,
it does not yield the best performance.

As another example, in [19] it is proposed another complex-
valued kernel for the CKLMS2 algorithm, the so-called inde-
pendent kernel:

kind(x,x′) = κRG (xr,x
′
r) + κRG

(
xj,x

′
j

)
+ j
(
κRG

(
xr,x

′
j

)
− κRG (xj,x

′
r)
)
, (25)

where x = xr + jxj and κRG (z, z′) = exp
(
−||z− z′||2/γ2RG

)
is the well-known real Gaussian kernel of real inputs z and
z′. The CKLMS2 algorithm with this kernel was named the
independent CKLMS estimate (iCKLMS). This independent
kernel mimics the structure in (15), but it uses the same real
function κRG for all the terms in (15), and the inputs to this
function are not the complex-valued inputs x, but their real or
imaginary parts. Also, for the iCKLMS estimate the pseudo-
kernel is null, hence the independent kernel has a skew-
symmetric imaginary part, i.e., κRG(xr,x

′
j) − κRG(xj,x

′
r) =

−(κRG(x′r,xj)− κRG(x′j ,xr)).
When the pseudo-kernel is null, the skew-symmetry

krj(x,x
′) = −krj(x,x

′) in the imaginary part of the ker-
nels used by the CKLMS2 or the iCKLSM algorithms may
not be a property satisfied by many to-be-learned func-
tions and, in such a case, enforcing a complex-valued ker-
nel can be counterproductive. Algorithms CKLMS1 [6] and
ACKLMS [14] avoid this problem by adding another condi-
tion: krj(x(i),x(l)) = 0. This means that these algorithms
use a real-valued kernel of the form k(x,x′) = 2krr(x,x

′).
The condition krj(x(i),x(l)) = 0 implies that the real and the
imaginary parts are not related and that one of them does not
provide information to learn the other [11].

In Table I we summarize, for every algorithm, the conditions
imposed on the kernel and pseudo-kernel terms.

We conclude that algorithms CKLMS1, CKLMS2 [6],
iCKLMS [19] and ACKLMS [14] cannot represent any pos-
sible complex-valued function, and yield a subset of the
cases that the gCKLMS algorithm proposed in this paper
can represent. This is the motivation to name our proposal
‘generalized’ CKLMS. The gCKLMS, with the kernel and the
pseudo-kernel terms, provides more flexibility to model the
learning problem by means of the four real-valued functions
krr, kjj, krj and kjr. Hence, the gCKLMS will improve results if
the conditions described above are not suitable for our learning
problem. Some interesting scenarios are as follows. If the real
and imaginary parts of the output are not independent, and
also they have different properties in terms of similarity, then
the gCKLMS with a kernel and a pseudo-kernel is needed.
If the real and imaginary parts of the output are independent,
krj = kjr = 0, but they still have different properties in terms of
similarity, krr 6= kjj, then kernel and pseudo-kernel are needed.
Finally, when the real and imaginary parts of the output are
independent, and they both have the same properties in terms
of similarity, the pseudo-kernel is null and a real-valued kernel
should be used. In general, setting the pseudo-kernel to zero
and enforcing a complex-valued kernel is counterproductive
unless you identify, for the particular problem at hand, a skew-
symmetry of the kind krj(x,x

′) = −krj(x,x
′).

We end this discussion about the kernels by bringing here
a suitable real-valued function for krr, kjj, krj and kjr proposed
in [11]. This is the adaptation to complex-valued inputs of the
real-valued Gaussian kernel:

kG(x,x′) = exp
(
−(x− x′)H(x− x′)/γ2

)
, (26)

where γ is the kernel parameter. This real function provides
a measure of similarity between the complex-valued inputs
that is simple but effective for complex-valued signals: inputs
closer to other input in the complex field are considered more
similar than inputs that are further away [11]. We will use it
in our experiments. For a further analysis about the selection
of suitable kernels for complex-valued applications see [11],
[24].

VI. EXPERIMENTS

We consider two experiments where we compare the per-
formance of our proposal the gCKLMS in (17), versus the
CKLMS2 in (18) [6], the iCKLMS [19], and the ACKLMS
algorithm in (21) [14].

In the first experiment, we reproduce the nonlinear channel
equalization task in [14]. In this experiment, the complex-
valued signals have independent real and imaginary parts, and
they are better represented with different kernels. We show
that in such a case the best choice is a real kernel and a real
pseudo-kernel.
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Fig. 1. MSE in dB versus the number of input samples for the soft nonlinear
channel with the circular input case for the CKLMS2 (γCG = 10), the
iCKLMS (γRG = 5), the ACKLMS as in [14] (γCG = 10), the ACKLMS
with kernel (26) (γr = 5), and the gCKLMS (γr = 6.5 and γj = 5.5).

In the second experiment, we propose learning a filtered
two-dimensional random process. At the output of the filter,
the real and imaginary parts are not independent, and we show
that we can use the imaginary part of the pseudo-kernel to
improve the performance.

As in [14], we use the complex Gaussian kernel kCG(x,x′)
in (24) for both the CKLMS2 and the ACKLMS. In fact, for
the ACKLMS the real part of this kernel is used, as was shown
in (21). We use the code available in [25] to run the algorithms.
For the iCKLMS, the CKLMS2 in (18) with the independent
kernel (25) is used.

For our proposed gCKLMS we use the general kernel and
pseudo-kernel in (15)-(16). For krr(x,x

′), kjj(x,x
′), kjr(x,x

′)
and krj(x,x

′) we propose to use the real-valued Gaussian
kernel kG(x,x′) in (26) with parameter γ = γr for krr, γ = γj
for kjj, γ = γrj for krj, and γ = γjr for kjr, respectively. The
kernel and pseudo-kernel can be simplified if the signals meet
any of the conditions discussed in Section V-A. For example,
if the real and imaginary parts of the signals are independent
we can set kjr(x,x

′) = krj(x,x
′) = 0 and the kernel and

pseudo-kernel are real-valued:

k(x,x′) = krr(x,x
′) + kjj(x,x

′), (27)

k̃(x,x′) = krr(x,x
′)− kjj(x,x

′). (28)

We use this simplification in the first experiment. Notice that if
we also assume that the real and imaginary parts of the output
use the same kernel, krr = kjj, then we should set γr = γj
and the pseudo-kernel term in (28) cancels. In such a case, as
explained in Section V, the gCKLMS approach simplifies to
the ACKLMS with real-valued kernel k(x,x′) = 2krr(x,x

′),
where krr(x,x

′) is as in (26) with γ = γr. We will refer to
this case as ACKLMS with kernel (26) in the experiments.

A. Nonlinear channel equalization

We face the problem of nonlinear channel equalization, as
in [6] and [14], for ease of comparison and continuity. The
channel consists of a linear filter and a memoryless nonlinear-
ity. The two nonlinear channels in [14] have been considered
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Fig. 2. MSE in dB versus the number of input samples for the soft nonlinear
channel with the noncircular input case for the CKLMS2 (γCG = 10), the
iCKLMS (γRG = 5), the ACKLMS as in [14] (γCG = 10), the ACKLMS
with kernel (26) (γr = 5), and the gCKLMS (γr = 6.5 and γj = 5.5).
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Fig. 3. MSE in dB versus the number of input samples for the strong
nonlinear channel with the circular input case for the CKLMS2 (γCG = 15),
the iCKLMS (γRG = 5), the ACKLMS as in [14] (γCG = 15), the ACKLMS
with kernel (26) (γr = 5), and the gCKLMS (γr = 5 and γj = 3).

0 1000 2000 3000 4000 5000
−16

−14

−12

−10

−8

−6

−4

n
Fig. 4. MSE in dB versus the number of input samples for the strong nonlin-
ear channel with the noncircular input case for the CKLMS2 (γCG = 15), the
iCKLMS (γRG = 5), the ACKLMS as in [14] (γCG = 15), the ACKLMS
with kernel (26) (γr = 5), and the gCKLMS (γr = 5 and γj = 3).

here. The first channel is the soft nonlinear channel, with linear
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filter

t(n) = (−0.9 + 0.8j) · s(n) + (0.6− 0.7j) · s(n− 1),

followed by the nonlinearity

q(n) = t(n) + (0.1 + 0.15j) · t2(n) + (0.06 + 0.05j) · t3(n).

The second one is the strong nonlinear channel, with linear
filter

t(n) =(−0.9 + 0.8j) · s(n) + (0.6− 0.7j) · s(n− 1)

+ (−0.4 + 0.3j) · s(n− 2) + (0.3− 0.2j) · s(n− 3)

+ (−0.1− 0.2j) · s(n− 4),

and nonlinearity

q(n) = t(n) + (0.2 + 0.25j) · t2(n) + (0.08 + 0.09j) · t3(n).

At the receiver, the signal q(n) is corrupted by additive
white circular Gaussian noise with an SNR of 15 dB to yield
the received signal r(n). The inputs to the equalizer are the
sets of samples x = [r(n + D), r(n + D − 1), · · · , r(n +
D − L+ 1)]>, where L > 0 is the filter length and D is the
equalization time delay. Here we set L = 5 and D = 2, as in
[14]. The goal is to estimate the original input signal s(n).

1) Gaussian distributed inputs: We first set the input sig-
nals as in [14]: s(n) = 0.7(

√
1− ρ2 · X(n) + jρ · Y (n)),

where X(n) and Y (n) are independent Gaussian random
variables, with ρ = 1/

√
2 for circular signals, and ρ = 0.1

for noncircular signals.
The real and imaginary parts of the signals are independent

and, therefore, we can set kjr(x,x
′) = krj(x,x

′) = 0 and use
the real-valued kernel and pseudo-kernel terms in (27)-(28) for
our proposed gCKLMS.

Experiments were conducted on 100 independent sets of
5000 samples of the input signal. For all the approaches, the
novelty criterion [26], [27], is used for sparsification with δ1 =
0.15 and δ2 = 0.2, as in [14].

Figs. 1 and 2 show the averaged mean square errors (MSE)
for the soft nonlinear channel. The circular input case is shown
in Fig. 1, and the noncircular input case is shown in Fig. 2.
Since we are reproducing here the experiment in [14], for the
CKLMS2 and the ACKLMS algorithms we set γCG = 10 and
µ = 1/8, i.e., the same values used in [14]. For the iCKLMS
we set γRG = 5 and µ = 1/8. For the gCKLMS algorithm we
set γr = 6.5 and γj = 5.5, and µ = 1/7. For the ACKLMS
with kernel (26) we set γr = 5 and µ = 1/10.

Figs. 3 and 4 include the MSE for the strong nonlinear
channel and the circular input and noncircular input cases,
respectively. Again, since we are reproducing the experiment
in [14], for the CKLMS2 and the ACKLMS algorithms we set
γCG = 15 and µ = 1/6, i.e., the same values used in [14]. For
the iCKLMS we set γRG = 5 and µ = 1/8. For the gCKLMS
algorithm we set γr = 5 and γj = 3, and µ = 1/7. For the
ACKLMS with kernel (26) we set γr = 5 and µ = 1/10.

In all the examples, the proposed gCKLMS outperforms the
other algorithms. The main advantage of the gCKLMS is that
by introducing a pseudo-kernel we can use a different kernel
for the real and the imaginary parts, krr(x,x

′) and kjj(x,x
′).

This extra degree of freedom, which is not present in the

other algorithms, is the key to obtain a better estimation. In
this experiment, the gain in MSE is small, because krr(x,x

′)
and kjj(x,x

′) are very similar. That is the reason why the
ACKLMS with kernel (26), i.e., setting γr = γj, performs well
and close to the general case. In any case, it can be observed
that to achieve a given error, the faster convergence of the
gCKLMS allows saving 10%-30% of the samples and time.
The dictionary size after sparsification and the running times
of the tested algorithms are in Table II and III1.

With the complex Gaussian kernel, both the ACKLMS in
[14] and the CKLM2 in [6] perform poorly compared to the
gCKLMS. Therefore, the experiments show that the complex
Gaussian kernel is not the best choice for this equalization
task and, as it is shown in Fig. 2, sometimes yields undesired
spikes in the learning curves.

TABLE II
DICTIONARY SIZE AFTER SPARSIFICATION AND RUNNING TIMES (IN

SECONDS) FOR THE SOFT NONLINEAR CHANNEL AND GAUSSIAN
DISTRIBUTED INPUTS

Circular Input Noncircular Input
Algorithm Dict. size Run time (s) Dict. size Run time (s)
gCKLMS 2966 4.6181 1866 3.5118
CKLMS2 3291 4.6314 2692 4.1555
ACKLMS [14] 3173 4.4803 2102 3.7701
ACKLMS, kernel (26) 3038 3.8185 1926 3.2533
iCKLMS [19] 3419 5.5193 2692 3.3111

TABLE III
DICTIONARY SIZE AFTER SPARSIFICATION AND RUNNING TIMES (IN
SECONDS) FOR THE STRONG NONLINEAR CHANNEL AND GAUSSIAN

DISTRIBUTED INPUTS

Circular Input Noncircular Input
Algorithm Dict. size Run time (s) Dict. size Run time (s)
gCKLMS 2565 5.1858 1439 3.0639
CKLMS2 3222 6.3349 2565 3.5103
ACKLMS [14] 3259 5.3047 2220 3.4936
ACKLMS, kernel (26) 2698 4.7781 1528 2.6946
iCKLMS [19] 2958 4.7952 2312 4.2762

2) Unbalanced digital modulated signals: In digital com-
munications inputs are discrete. For discrete and unbalanced
digital modulated signals, the difference between krr(x,x

′) and
kjj(x,x

′) is greater and the proposed gCKLMS algorithm is a
good choice versus the previous proposals, with null pseudo-
kernels. To illustrate this point, we propose to repeat here
the equalization experiment for the soft nonlinear channel,
where the input signals are now s(n) = 0.2X(n) + j0.1Y (n),
where X(n) and Y (n) are independent binary {−1,+1} data
streams.

For the proposed gCKLMS algorithm we use again the real-
valued Gaussian kernel (26) with parameters γr = 0.59 for
krr(x,x

′) and γj = 1.63 for kjj(x,x
′), respectively. For the

ACKLMS with kernel (26) we set γr = 1.52. The learning
parameter is set to µ = 0.5 for both approaches.

We generate 100 independent test trials with a set of 10000
samples to test the algorithms. The mean square errors (MSE)
of the estimation are compared in Fig. 5 versus the number of
input samples. It can be observed that the proposed gCKLMS

1Matlab 2018a on a computer with Windows Server 2016, 64 GB RAM
and Intel Xeon 2.80 GHz Processor
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Fig. 5. MSE in dB versus the number of input samples for the ACKLMS with
kernel (26) (γr = {0.5, 1, 1.52}) and the gCKLMS (γr = 0.59, γj = 1.63).
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Fig. 6. MSE in dB for the imaginary part versus the number of input samples
for the ACKLMS with kernel (26) (γr = {0.5, 1, 1.52}) and the gCKLMS
(γr = 0.59, γj = 1.63).
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Fig. 7. MSE in dB for the real part versus the number of input samples
for the ACKLMS with kernel (26) (γr = {0.5, 1, 1.52}) and the gCKLMS
(γr = 0.59, γj = 1.63).

outperforms the ACKLMS with kernel (26), i.e., the case with
null pseudo-kernel.

Again, the key to obtaining a better estimation with the
gCKLMS in this experiment is the possibility to define a
different kernel for the real part krr(x,x

′) and the imaginary
part kjj(x,x

′). Figs. 6 and 7 are included to highlight this.

Fig. 6 shows the estimation MSE of the imaginary part of
the signals, while Fig. 7 shows the estimation MSE of the
real part. In this experiment the real and imaginary parts
require a different kernel to be accurately learnt. However,
the ACKLMS algorithm uses the same kernel for both parts.
The parameter value γr with the best performance to learn
the imaginary part of the output in Fig. 6 yields the worst
estimation of the real part in Fig. 7. And vice versa, the best
parameter value to learn the real part of the output in Fig.
7 provides the worst performance in Fig. 6. Remarkably, the
estimation with the proposed gCKLMS is always low for both
imaginary and real parts, as it allows to set different values
for krr(x,x

′) and kjj(x,x
′).

B. A random process filtered

In this experiment, we show the performance of the pro-
posed gCKLMS when the signals do not have independent
real and imaginary parts. We generate a complex-valued
signal with correlated real and imaginary parts by filter-
ing a real-valued random process with a complex-valued
filter. We define the complex-valued filter h(x) = α ·(
2 exp(−|x|2/3) + j exp(−|x|2/0.5

)
, where x = xr+jxj, with

xr ∈ [−5, 5] and xj ∈ [−5, 5], and α = 0.0228 to ensure unit
norm. Then we define a real Gaussian process s(xr, xj) with
zero mean and unit variance, and we pass this process through
the filter. We show in Figs. 8 and 9 the real and imaginary
parts of one sample of the filtered process in xr ∈ [−5, 5] and
xj ∈ [−5, 5].

At the output of the filter we get a Gaussian process. There
is a known relationship between the variance of a Gaussian
process and the kernel, and between the pseudo-covariance of
the Gaussian process and the pseudo-kernel [8]. Therefore, the
covariance and pseudo-covariance of the process help in the
design of suitable kernels. It can be shown that the covariance
of the process at the output of the filter is real-valued with two
additive terms. Hence, we can conclude that for the gCKLMS
we could use a kernel with the following terms:

k(x,x′) = krr(x,x
′) + kjj(x,x

′). (29)

Also, it can be found that the pseudo-covariance of the process
is complex-valued, and this is an indication that there exists
a correlation between the real and the imaginary parts of
the filtered process [1]. Thus, we can conclude that for the
gCKLMS we could use a pseudo-kernel with the following
terms:

k̃(x,x′) = krr(x,x
′)− kjj(x,x

′) + 2jkjr(x,x
′). (30)

All the terms in the covariance and pseudo-covariance are
exponentials of the form exp(−d∗xdx/γ), where dx = x− x′
[8], having different γ values and scalings. Accordingly, we
propose to use the real-valued Gaussian kernel kG(x,x′) in
(26) for krr(x,x

′), kjj(x,x
′) and kjr(x,x

′), with different
scaling and kernel parameters. Further details about the con-
struction of kernels based on covariances can be found in [8].

In the gCKLMS algorithm, the real and imaginary parts
of the error e provide two degrees of freedom to adjust
the amplitudes of the kernel terms as the learning process
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advances. As we now have a third term, we use an extra
amplitude parameter v to provide another degree of freedom
to allow each term of the kernels to have a different scaling.
Hence, for krr(x,x

′) and kjj(x,x
′) we use the real-valued

Gaussian kernel with parameters γr and γj, respectively. For
the imaginary part of the pseudo-kernel, we also use the real-
valued Gaussian kernel with parameter γjr and scaled with
v, i.e., kjr(x,x

′) = v · kG(x′,x′). In a training stage we set
γr = 1.73, γj = 0.58, γjr = 1.11 and v = 0.09. The learning
step was set to µ = 1/4.

For the ACKLMS we again propose k(x,x′) = 2krr(x,x
′),

with krr(x,x
′) the real-valued Gaussian kernel kG(x,x′) in

(26), since it yields better performance than the complex
Gaussian kernel. The kernel parameter is set to γr = 0.76
and µ = 1/2.

We generate 100 independent samples of the filtered process
in xr ∈ [−5, 5] and xj ∈ [−5, 5], each with 10000 data
points. A random white circular Gaussian noise is added to the
samples. The averaged MSE of the estimation are compared
in Fig. 10 versus the number of input points for two values
of SNR, 15 and 50 dB. The proposed gCKLMS algorithm
greatly outperforms the ACKLMS algorithm. We also include
in the figure the performance of the gCKLMS when v = 0,
i.e., when both the kernel and pseudo-kernel are real-valued.
Fig. 10 shows that the imaginary part of the pseudo-kernel
helps to improve the prediction accuracy by making use of
the kjr(x,x

′) term in the pseudo-kernel.

Fig. 8. Real part of a sample of the filtered process.

VII. CONCLUSIONS

In this paper, we have developed a novel generalized for-
mulation for the complex-valued KLMS algorithm. Based on
the ideas recently presented in [11] for the WL-RKHS, we
have developed the gCKLMS algorithm that includes both
a kernel and a pseudo-kernel. We reviewed the theory of
RKHS of vector-valued functions to define the feature map
for the RKHS of composite vector-valued functions. Based
on this definition, we were able to develop the composite
KLMS algorithm to later rewrite it in augmented notation and,
finally, yield the proposed gCKLMS algorithm. Also, in this

Fig. 9. Imaginary part of a sample of the filtered process.
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Fig. 10. Averaged MSE in dB versus the number of input samples for the
ACKLMS (γr = 0.76), the gCKLMS (γr = 1.73, γj = 0.58, γjr = 1.11)
with v = 0 and v = 0.09 . Dashed lines: SNR = 50 dB. Solid lines: SNR =
15 dB.

process, we were able to identify the equations that define the
kernel and pseudo-kernel. These equations follow the structure
introduced in [11], and include four real-valued functions:
krr(x,x

′), kjj(x,x
′), krj(x,x

′) and kjr(x,x
′). We can use the

analysis in [11] to design these real-valued functions and
set the kernel and pseudo-kernel for a given application.
Another important contribution of the paper is to show that
previous proposed complex-valued KLMS algorithms are just
particular simplifications of the gCKLMS proposed in this
paper. The experiments included reveal that the gain of using
the gCKLMS algorithm, which provides more flexibility than
the previously proposed algorithms, can be significant.
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