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Abstract

Compared to other anomalous video event detection approaches that ana-

lyze object trajectories only, we propose a context-aware method to detect

anomalies. By tracking all moving objects in the video, three different levels

of spatiotemporal contexts are considered, i.e., point anomaly of a video ob-

ject, sequential anomaly of an object trajectory, and co-occurrence anomaly

of multiple video objects. A hierarchical data mining approach is proposed.

At each level, frequency based analysis is performed to automatically dis-

cover regular rules of normal events. Events deviating from these rules are

identified as anomalies. The proposed method is computationally efficient

and can infer complex rules. Experiments on real traffic video validate that

the detected video anomalies are hazardous or illegal according to traffic
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regulations.
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1. Introduction

Discovery of suspicious or anomalous events from video streams is an in-

teresting yet difficult problem for many video surveillance applications. By

automatically finding suspicious events, it significantly reduces the cost to

label and annotate the video streams of hundreds of thousands of hours. In

many scenarios, the video camera is fixed and the site being monitored is

mainly static. By modeling the statistics of the background and the appear-

ance and dynamics of the foreground (objects such as a person, car, airplane),

various features of the objects, such as location and motion at different times,

can be extracted from the video data. These object features are useful in

characterizing video events. For instance, a video event can be defined by

the motion trajectory of any single object [1–7].

Anomalous video event detection is a challenging problem in that it is

difficult to define anomaly in an explicit manner. It is possible that we may

need to identify an anomalous event when it appears, despite the fact that it

had never occurred before. The more practical approach is to detect normal

events first (as they follow some regular rules) and treat the rest as anomalies.

In many cases, however, a priori knowledge of regular rules is lacking and

no training data for normal video events are available. Therefore, there is a

need for an unsupervised approach to automatically mine these rules directly

from unlabeled data.
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Clustering-based approaches have been recently investigated to address

this problem [1–3, 5, 7, 8]. This approach is based on the fact that normal

events appear frequently and dominate the data, while anomalies are different

from the commonality and appear rarely. For instance, a running person

can indicate an anomalous event if most people in the crowd are walking;

similarly, a car moving against the direction of most other moving vehicles

can indicate an anomalous event too. Therefore, unsupervised clustering

can be performed on all video events. Those events clustered into dominant

(e.g., large) groups can be identified as normal, representing the regular rules.

Those that cannot be explained by the regular rules (e.g., outliers distant

from all cluster centers) are defined as anomaly.

Despite the success of clustering-based approaches for anomaly detection,

there exist several limitations. Most clustering approaches consider a video

event as the motion trajectory of one single object. However, this defini-

tion ignores important spatial and temporal contextual information. On one

hand, video anomaly may not correspond to the whole trajectory, only to a

part of it. On the other hand, anomaly can arise due to the inappropriate

interactions among multiple objects (i.e., multiple trajectories), even though

their individual behaviors are normal. Thus, anomaly detection based on

trajectory clustering can cause miss detections.

Instead of relying solely on trajectories, we define video events at different

semantic levels considering both spatial and temporal context. At each level,

frequency based analysis is performed. Events appearing with high frequency

are automatically discovered and declared to be an explicitly description of

the regular rules. The events deviating from these rules are detected as
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anomalies. We test the proposed approach on real traffic videos, where ve-

hicles have been detected and tracked. The task is to discover anomalous

events from a collection of movement trajectories of vehicles. The results

show that our approach can automatically infer regular rules of traffic mo-

tion of the specific scene (corresponding to the real traffic rules) and detect

anomalous events at three levels: motion of one vehicle at any specific time,

motion of one vehicle within a time range, and co-occurrence of multiple ve-

hicles. Most of the detected video anomalies are proved to be hazardous or

illegal, according to vehicular traffic regulations.

The rest of this paper is organized as follows. Section 2 provides an

overview of the recent literature. Sections 3, 4 and 5 describe our approach

in discovering anomalous video events at different semantic levels. Exper-

imental results are presented in Section 6, and we conclude the paper in

Section 7.

2. Related Work

Many approaches of video event analysis are based on the object trajec-

tories extracted from video. Due to the lack of a priori knowledge of normal

events, unsupervised clustering is performed on all trajectories and dominant

trajectory clusters are identified and modeled as normal event patterns (i.e.,

regular rules). Then anomalous events can be detected from those trajec-

tories not fitting the normal models. Specifically, there are many different

representations of an object trajectory given, for example, by a sequence

of muti-dimentional features [1], the curvature feature of the trajectory [9],

a linear dynamical system [10], dynamic Bayesian networks [7, 11–13], the
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motion histogram [14], and the multivariate probability density function of

spatiotemporal variables [15]. Considering trajectory clustering, the clas-

sical k-means algorithm is applicable if each trajectory is resampled to a

fixed length [12] and the number of clusters is estimated using the approach

in [4]. The spectral clustering algorithm is another popular choice [2, 5, 13]

because the number of clusters can be well determined by performing eigen-

value decomposition of the affinity matrix of all trajectories. Alternatively,

a sequential grouping method is used in [3], where each trajectory is sequen-

tially taken from the database and either matched to an existing group or

used to initialize a new group. Other algorithms used for trajectory cluster-

ing include hierarchical clustering [7], mixture model [11, 14], mean shift [6],

SVM [8], and kernel density estimation [15].

In some noisy video data, however, the object trajectory cannot be esti-

mated accurately. Approaches are proposed to represent video events based

on features at the pixel-level or at local spatio-temporal patches. Based on

these representations, normal events are discovered by capturing and model-

ing the dominant motion of objects involved in the video stream. For exam-

ple, Zhong et al. [16] used spatiotemporal gradients of all pixels to represent

video motion and detected video anomalies by spectral clustering on this

gradient field. Boiman and Irani [17] used spatial-temporal patches for event

modeling. They considered video normality as being composed from large

chunks of spatial-temporal patches. Hamid et al. [18] introduced a represen-

tation of activities as bags of event n-grams, where they analyzed the global

structural information of activities using local event statistics. They detected

anomalous events based on discovering regular sub-classes of normal events.

5



Wang et al. [19] represented video events as distributions over low-level vi-

sual features on a pixel basis and used hierarchical Bayesian models for event

clustering. In our previous work [20] we proposed a representation of crowd

motion in video using moving blobs and the spatial relationship among blobs,

based on which anomalous motion or interaction of pedestrians is detected.

Despite the many different representations of video event, spatial and

temporal contextual information is not typically used, which limits the power

of video anomaly detection. By considering spatial context, an anomalous

video event may include not only a single agent (e.g., a moving object or

an image patch), but also multiple spatially related agents and their inter-

actions. By considering temporal context, an anomalous video event may

include behaviors at multiple times, i.e., having an arbitrary length of time.

Many of the existing works fail to provide any modeling of such contextual

information. One of the attempts to model spatiotemporal context for video

event analysis is the work of Oliver et al. [21], where a coupled HMM is used

to model the interaction between two object trajectories. Galata et al. [22]

used variable length Markov models to represent temporal dependency of

atomic behavior components. Yao et al. [23] represented the trajectories of

multiple objects by a 3D graph which is augmented by a number of spa-

tiotemporal relations (links) between moving and static objects in the scene.

The works in [24, 25] learned co-occurrence statistics using a Markov random

field model for normal events across space-time. Wang et al. [19] used hi-

erarchical Bayesian models to connect three elements in visual surveillance:

low-level visual features, simple atomic activities, and interactions. Based on

this modeling a summary of typical atomic activities and interactions occur-
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ring in the scene was provided and video anomalies were detected at different

levels.

Similarly to [19], we propose a hierarchical representation of video events.

Instead of intuitively considering two levels of video events (i.e., atomic ac-

tivities and interactions) as in [19], we define three levels of events based

on different spatial and temporal context. In order to detect anomalous

video events at different levels, we perform frequency based analysis which

is a bottom-up method, differing from the top-down method (a generative

model) used in [19]. In addition, by utilizing the object tracking information,

our approach can detect anomalous events associated with specific object(s)

at specific time(s), instead of image pixels or patches as in [19].

3. Point anomaly detection

In a video scenario with moving objects (e.g., vehicle, humans), the most

easily observed activity is the instant behavior of any single object i at a

specific time t, which we categorize as an atomic event ea(i, t). Typically,

an atomic event describes the location, moving direction, and velocity of

the object at each video frame. It is the basic unit for describing more

complicated events and interactions.

For any specific video scenario, the instant motion of a single object usu-

ally follows certain rules. For example, road traffic in a certain lane has to

move in a determined direction, and the traffic waiting for red lights must

stop at a certain location. As most atomic events follow some regular motion

rules, we can detect normal and anomalous ones based on their frequency of

appearance. A simple yet effective way of achieving the above is to represent
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each atomic event as a discrete feature vector, compute the histogram of

all feature vectors, and use a threshold to identify bins of lower probability.

Those atomic events with low frequency are declared point anomalies (fol-

lowing a similar definition given in [26]), because these anomalies consider no

contextual information. After this step we can readily detect some obvious

anomalies from the video, and exclude them from subsequent analysis.

4. Sequential anomaly detection

A video anomaly may not only consist of instantaneous behavior, but

may also be characterized by the ordering or transition of instantaneous

behaviors. For example, in a traffic scenario, two atomic events, such as

entering an intersection from a straight-only lane and making a left turn

within the intersection, can be normal. But their combination is anomalous

(illegal). In order to exploit this temporal context, we define a sequential

event es(i) as a sequence of atomic events associated with the trajectory

of an object i. Note that the same atomic event appearing continuously is

regarded as only one item in the sequence. For example, es(i) is represented

by the sequence
(
ea(i, 1), ea(i, 2), ea(i, 4), · · ·

)
, if ea(i, 3) = ea(i, 2).

Similarly to point anomaly detection, an anomalous sequential event can

be identified by finding sequences that appear rarely, e.g., turning left from

a straight-only lane must be rare compared to other sequential events. How-

ever, a sequential anomaly may last an arbitrary length of time (possibly

only a part of the complete sequence). Techniques are needed to deal specif-

ically with the variation of time length. Another difficulty is the effect of the

noise when counting the frequency of similar sequences. For example, if each
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atomic event is denoted by a number 1, 2, 3, · · · , the sequence of (1, 6, 2,

3, 4, 5) might be counted as an appearance of the sequence (1, 2, 3, 4, 5),

because they are almost the same except for the insertion of atomic event 6.

Thus, small variations must be allowed for.

To accommodate this design constraint, we adopt the technique of fre-

quent subsequence mining [27]. Given two sequential events defined in our

work, es(i) =
(
ea(i, 1), ea(i, 2), · · ·

)
and es(j) =

(
ea(j, 1), ea(j, 2), · · ·

)
, the

subsequence relationship between them is defined as follows: es(i) is a sub-

sequence of es(j), if and only if a monotonically-increasing index mapping I

for each element in es(i) can be established, such that each element ea(i, k)

is a subset of ea(j, I(k)). That is, a sequence is a subsequence of another, if

it can be matched with arbitrary long gaps but preserving the order, such

that the matched elements satisfy a subset relationship. This accommodates

the design constraint of allowing for small variations that can be due to the

presence of noise.

In practice, we apply the CloSpan algorithm by Yan et al. [27] on all

sequential events collected from the video. It automatically discovers fre-

quent subsequences (instead of the complete sequences) with their frequency

above a given threshold. In addition, this algorithm ensures the discovered

subsequences contain no super-sequence with the same support (i.e., occur-

rence frequency). Therefore, the resulting subsequences include all typical

repetitive patterns of the collected sequential events, and are thus regarded

as patterns of normal sequential events.

Based on these normal patterns, we can classify every sequential event and

detect anomalous parts. To compare the similarity between two sequences,
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we use the edit distance [28]. In our case, the edit distance between two

sequences is given by the minimum number of operations (insertion, deletion,

or substitution of an atomic event) needed to transform one sequence into

the other. Therefore, any sequential event is classified to the normal pattern

with the minimum edit distance. Consequently, those atomic events within

a sequence, which need to be deleted to match the normal patterns, are

identified as anomalies. Video anomaly detected at this level considers the

temporal context of an object trajectory and is referred to as sequential

anomaly. Note that the sequential anomaly is not necessarily a complete

sequence, but can be any part of a sequence with arbitrary time length.

5. Co-occurrence anomaly detection

The highest level of anomaly arises from the co-occurrence of multiple

objects. For example, in a traffic scenario, turning left and going straight

within the intersection are both normal events when considered indepen-

dently; however, making a left turn in front of incoming traffic is illegal and

thus anomalous. This co-occurrence anomaly usually happens in the area

with multiple objects and intensive interactions, e.g., within a road intersec-

tion. In order to detect this kind of anomaly, we first define a co-occurrence

event eA
c (t) as an instant event at time t for a specific area A of a video

frame. As every object appearing in this area at any time instance has a

label of atomic event pattern and sequential event pattern (anomalies are

excluded), a co-occurrence event can be represented as an itemset, with each

item corresponding to a label. Possible definitions include an itemset of

atomic event labels, i.e., {ea(i, t)| all i appearing in area A at t}, and an
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itemset of sequential event labels, i.e., {es(i)| all i appearing in area A at t}.

Similarly to point and sequential anomaly detection, an anomalous co-

occurrence event is characterized by its rareness of appearance compared to

other co-occurrence events. In order to find normal patterns of co-occurrences

and detect anomalies, we apply the frequent itemset mining algorithm [29,

30] on all co-occurrence events collected from the video, treating each co-

occurrence event as a transaction. This algorithm discovers frequent subsets

of co-occurrences (frequency above a given threshold) and also ensures the

discovered subsets contain no superset with the same support. The resulting

subsets include all typical repetitive patterns of the collected co-occurrence

events, and are thus regarded as patterns of normal co-occurrence events.

Based on these normal patterns, we can classify every co-occurrence event

and detect the anomalous parts. A simple approach is to classify each co-

occurrence event to the normal pattern with maximal overlapping items.

Nevertheless, it neglects the temporal constraint of co-occurrence events

through video stream. For example, in a traffic video of a road intersec-

tion, as a result of the traffic light signaling, only a few combinations of

driving behaviors are allowed at one time. New behaviors appear only at

the time when traffic lights change. In other words, normal co-occurrence

events here correspond to a few traffic states and there exist specific ways

of transitioning among them. Therefore, in order to classify co-occurrences

at every time to a normal pattern (state), we need to consider this temporal

constraint.

Based on the above observation, the co-occurrences at all times can be

considered as an observation sequence Y generated from a hidden Markov
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model (HMM), where Y =
(
eA

c (1), eA
c (2), · · ·

)
. The hidden states correspond

to normal co-occurrence events discovered previously by frequent itemset

mining. Therefore, in order to classify every co-occurrence event to one of

the normal co-occurrence patterns, we need to determine the most likely

sequence of hidden states that led to the observations in Y . Actually, co-

occurrence classification becomes an HMM decoding problem.

First we need to determine the parameters of the HMM. We denote aij as

the transition probability from state i to state j, and bj(t) as the probability

of state j emitting a co-occurrence eA
c (t). Note that bj(t) has a discrete prob-

ability distribution with infinite number of observed values, because eA
c (t)

may consist of an arbitrary number of items. Due to this complexity of bj(t),

the conventional forward-backward algorithm may not be applicable. In a

forward algorithm, in order to calculate the forward probability αj(t) (the

probability that the HMM in state j at step t having generated the first t

observations), bj(t) needs to be specified.

To address this issue, we propose a special modeling of the distribution of

bj(t), based on which the Viterbi algorithm can be used iteratively to solve

the HMM decoding problem. This solution is based on the observation that

the Viterbi algorithm does not rely on the exact value of αj(t) but on the

comparison among all αj(t)’s for a fixed t, because it only needs to choose

one path at each step. Specifically, at each time t, the Viterbi algorithm

chooses for each state j a transition path, i.e., state i at step t− 1, as

i = arg max
i

(
αi(t− 1)aij

)
. (1)

If αi(t− 1) is comparable for different i, this path can be successfully chosen

and the HMM decoding problem can be finally solved.
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As we all known, αj(t) is calculated as

αj(1) = bj(1), (2)

αj(2) = bj(2)
∑

i

αj(1)aij, (3)

αj(3) = bj(3)
∑

i

αj(2)aij, (4)

· · ·

αj(t) = bj(t)
∑

i

αj(t− 1)aij. (5)

Therefore, instead of specifying the exact value of bj(t), we may just model

the relationship among bj(t)’s for different j. Specifically, we assume that

for any co-occurrence eA
c (t), the probabilities of it emitted from state i or j

satisfy the relationship
bi(t)

bj(t)
=
mi(t)

mj(t)
, (6)

where mj(t) is the number of items in eA
c (t) that belong to pattern j. In

other words, the emission probability is proportional to the number of items

shared by the emission itemset and the state itemset. For example, eA
c (t) =

{1, 1, 2, 2, 2, 3, 4, 5, 5} (1, 2, 3, · · · are different item labels), state i = {1, 2, 3},

and state j = {3, 4, 5}. We have bi(t)/bj(t) = 6/4, because the items 1, 2

and 3 appear in eA
c (t) 6 times in total and the items 3, 4 and 5 appear in

eA
c (t) 4 times in total. Alternatively, we can express bj(t) for any state j as

bj(t) = c(t) ·mj(t), (7)

where c(t) is the same constant for every state. Substituting (7) into (2)-(5),
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we have

αj(1) = c(1) ·mj(1), (8)

αj(2) = c(1)c(2) ·mj(2)
∑

i

(
mi(1)aij

)
, (9)

αj(3) = c(1)c(2)c(3) ·mj(3)
∑

i

(
mi(2)aij

∑
k

(
mk(1)aki

))
, (10)

· · ·

αj(t) =
( t∏

i=1

c(i)
)
· f
(
{mj(i)}ti=1, {aij}

)
(11)

Note that the c(t) term is constant and f(·) is only related to {mj(i)} and

{aij}. Therefore, αj(t)’s can be compared for different j at any time t without

knowing the exact value of bj(t). Based on this modeling, the Viterbi path

can be determined by (1).

Actually, we use an iterative approach to determine {aij} and to decode

states, as shown in Algorithm 1.

Algorithm 1

1: Set initial {aij} to uniform distribution;

2: Decode states by Viterbi algorithm based on (1) and (11);

3: Estimate {aij} by taking the ratio between the number of transitions

from state i to state j and the total number of any transitions from state

i. Go to step 2 to recalculate {aij} until the error of {aij} is small enough

(convergence is reached).

Once each co-occurrence event is associated with one of the states (normal

co-occurrence patterns), anomalies can be detected by figuring out those

items that are different from its corresponding normal co-occurrence pattern.
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Specifically, if the co-occurrence event eA
c (t) is classified to the pattern j, all

the items in eA
c (t) that are not included in the itemset of pattern j are

identified as anomalies (co-occurrence anomalies).

6. Experimental results

In this section, we present an experimental study in order to evaluate

our approach. As a general mining approach, the proposed 3-level anomaly

detection is applicable to many different scenarios. These scenarios should

include a large amount of object motion. The normal motions, both the

motion of a single object and the motion of multiple objects, follow some

intrinsic but unknown rules. Most motions follow this rule while few anoma-

lies do not. Our task is to automatically mine these rules of normal motion

from all the data (no prior knowledge, training data, etc.) and to detect any

anomalous motions breaking rules. One good example is the traffic motion

at an intersection guided by traffic lights.

6.1. Data

As a case study, we have selected a surveillance video monitoring traffic for

a long time at a road intersection. This video is taken from a large database

of aerial traffic videos from the Next Generation Simulation (NGSIM) project

(http://ngsim.camsys.com/). One example frame is shown in Fig. 1. This

is an one-hour-long video monitoring a 4-way intersection in Los Angeles,

California. Each of the roads is a two-way road with multiple lanes (some

with right turn or left turn lanes). All moving traffic in this area is controlled

by traffic lights within the intersection. Thus, the underlying rule of normal

motion is the legal motion directed by the traffic lights. Detailed trajectory
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Figure 1: Example frame of video monitoring traffic at road intersection (all lanes are

numbered from 1 to 29 and the intersection area is numbered as 30).

information for every vehicle is available. However, with the information of

traffic signaling unknown, our goal is to discover traffic rules followed by most

vehicles in this area and to detect anomalies at different levels.

6.2. Point anomaly detection

For the point anomaly detection, we represent each atomic event by three

discrete features, i.e., the position of the vehicle, the driving direction, and

the velocity. Every feature is quantized to discrete values. In our experi-

ment, the vehicle position is represented by the specific lane or intersection

it occupies (although other positional features are applicable, the lane infor-

mation for each vehicle at every specific time is available directly from this

database). As shown in Fig. 1, all lanes are numbered from 1 to 29. The

intersection area is numbered as 30. The driving direction has 4 possible

values (north, south, west, east). The velocity is discretized to either moving

(v > 0) or stopping (v ≈ 0).

A 3-D histogram for all the atomic events throughout the video is es-
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tablished. By applying a threshold (10% of the average bin height in our

experiments), we detect 54 frequent (normal) behaviors, as shown and num-

bered in Fig. 2. Specifically, Fig. 2(a) shows moving normal events (v > 0),
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Figure 2: Frequent atomic events: (a) moving normal events (v > 0) with the red squares

referring to vehicle positions and the arrows indicating driving directions; (b) stopping

normal events (v ≈ 0) with the arrows showing the facing directions of the vehicles.

with the red squares referring to vehicle positions and the arrows indicat-

ing driving directions. Figure 2(b) shows stopping normal events (v ≈ 0),

with the arrows showing the facing directions of the vehicles. It is observed

that these 54 normal atomic events include all the legal driving directions

allowed in every lane. Consequently, the atomic events that do not fall into

any of these normal ones are illegal driving situations and are thus detected

as anomalies. Two examples are shown in Fig. 3, where tracked vehicles are

indicated by green numbers. Figure 3(a) shows a vehicle (indicated by a red

ellipse) moving eastwards, since it moves sharply from lane 4 to lane 5 (see

Fig. 1). This anomalous movement is due to the fact that the vehicle is in-

tended to make a right turn at the intersection, but did not decide to change
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Figure 3: Example results of point anomaly (green label indicates ID of each vehicle) :

(a) shows a vehicle (indicated by a red ellipse) moving eastwards, since it moves sharply

from lane 4 to lane 5 (see Fig. 1); (b) shows one vehicle stopping in lane 12 (see Fig. 1)

right after leaving the intersection.

lanes until the very last moment. Figure 3(b) shows one vehicle stopping in

lane 12 (see Fig. 1) right after leaving the intersection. Both of them are

disruptive behaviors for normal traffic, as they may block subsequent traffic.

6.3. Sequential anomaly detection

Based on the 54 normal instant behaviors we identified, all the point

anomalies can be excluded from the database. Then, sequential anomaly

can be detected from the remaining data. For each vehicle, from the time it

appears in the video to the time it disappears, all of its instant events are

concatenated into a sequence. The sequence of events encodes information

on the temporal relationship of atomic events. For example, most of the

vehicles starting from atomic event 1 in Fig. 2(a) are going to proceed with

atomic event 31, followed by event 9, because vehicles are going straight

when starting with atomic event 1. The sequence (1,31,9) should appear
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frequently (possibly as subsequence) within all the sequences collected from

the video. On the other hand, the sequence (1,31,10) appears rarely if any,

because few vehicles change lane within the intersection when going straight

(this is actually illegal).

Applying frequent subsequence mining on all sequences (the threshold is

set to 1% of the total sequence number), we detect 44 frequent (normal)

sequential patterns, with some of them shown in Fig. 4. It is observed that

NS

E

W

Figure 4: Frequent sequential events indicated by red paths.

all possible traveling routes permitted in this area are included. After that,

we classify every sequential behavior to one of the normal patterns with the

minimal edit distance. The anomalous part of the sequential behavior is

detected as those atomic behaviors which need to be deleted so as to match

the normal pattern. Two examples are shown in Fig. 5, with the anomalous

part shown by a red dashed line. Figure 5(a) shows a vehicle changing lane

within the intersection. Figure 5(b) shows a vehicle making a left turn from

a no-turn lane. Both of them are illegal behaviors.
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Figure 5: Example results of sequential anomaly (the anomalous part is shown in red

dashed line) : (a) shows a vehicle changing lane within the intersection; (b) shows a

vehicle making a left turn from a no-turn lane. Both of them are illegal behaviors.

6.4. Co-occurrence anomaly detection

Finally, we detect co-occurrence anomaly. We constrain our co-occurrence

analysis to the region within the intersection (i.e., region 30 in Fig. 1), be-

cause this region most of the time has multiple vehicles and intensive inter-

action. In this experiment, a co-occurrence event is defined as an itemset

of intersection-passing types of all vehicles within the intersection at this

moment. Intersection-passing types are clusters of normal sequential pat-

terns with adjacent starting and ending atomic behaviors. For example, in

Fig. 2, the sequential patterns (1, 31, 9), (2, 31, 10), (3, 31, 11) fall in

the same intersection-passing type south-to-north, and the sequential pat-

terns (15, 33, 30, 18), (16, 33, 30, 19) fall in the same intersection-passing

type north-to-east. Clustering all normal sequential patterns results in 12

intersection-passing types, as shown in Fig. 6.

By applying frequent itemset mining on all co-occurrences (the threshold
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Figure 6: Intersection-passing types indicated by red routes.

is set to 1% of the total co-occurrence number), we detect a few frequent co-

occurrence events. It is observed that several frequent co-occurrences have

large correlation because they share very similar itemset. Thus we further

cluster them into groups using spectral clustering, where pointwise mutual

information [31] is used as the similarity measure. Specifically, for any two

frequent co-occurrences (subsets) i and j, the similarity s(i, j) is defined as

s(i, j) = log
p(i, j)

p(i)p(j)
, (12)

and is further estimated by

s(i, j) = log
(# of i, j appearing in the same co-occurrence)

(# of i’s appearances) · (# of j’s appearances)
. (13)

The number of clusters is determined by the eigengap heuristic, i.e., to choose

the number k such that all eigenvalues 1, · · · , k are very small, but k + 1 is

relatively large. Finally, we end up with 5 groups, actually corresponding

to the 5 states generated from the traffic light signals. Figure 7 depicts the

driving directions allowed for each state.

Subsequently, we label the state for every co-occurrence event all through

the video by the proposed iteration approach and detect all co-occurrence
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(a) State 1 (b) State 2 (c) State 3

(d) State 4 (e) State 5

Figure 7: 5 normal co-occurrence patterns (states): red routes indicate the driving direc-

tions allowed for each state

anomalies. Figure 8 shows the convergence process of our iterative approach

in Algorithm 1. P (Y ), the probability of the whole sequence Y generated

from the HMM keeps increasing, while the error of transition probability

keeps decreasing, until they both converge. Figure 9 shows two examples of

detected co-occurrence anomalies, with the anomalous part shown by a red

dashed line. Figure 9(a) shows a vehicle turning right while there is left-

turning traffic going to the same lane. Figure 9(b) shows a vehicle turning

left in front of incoming traffic. Both of them are illegal behaviors.
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Figure 8: Convergence of iteration

6.5. Evaluation and comparison

For the three types of anomaly detection, determining the threshold is an

important issue. To further test the robustness of our approach, we vary the

threshold and plot ROC curves. The ground truth is acquired by manually

labeling all the events. From Fig. 10 we observe that our detection performs

well when the threshold is properly set, with a typical detection rate above

90% for point anomaly, above 80% for sequential anomaly, and above 70%

for co-occurrence anomaly. Note that co-occurrence anomaly detection is

comparably more sensitive to threshold. Actually, it performs well as long

as the 5 traffic states (shown in Fig. 7) are discovered correctly, i.e., a proper

threshold is selected for frequent itemset mining. Otherwise, the HMM de-

coding based on the incorrect states would make the results of co-occurrence

labeling even worse.

Finally, we compare the proposed approach to some existing approaches

applicable to the same task as ours. For sequential anomaly detection, one

option is to cluster all trajectories based on the (x, y) coordinates at ev-
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Figure 9: Example results of co-occurrence anomaly (the anomalous part is shown in red

dashed line) : (a) shows two vehicles turning into the same lane; (b) shows a vehicle

turning left in front of incoming traffic. Both of them are illegal behaviors.

ery specific time and detect outliers as anomalies. Specifically, we perform

spectral clustering on all vehicle trajectories in the video using a distance

measure based on dynamic Bayesian network (DBN) [13]. This approach

ends up with 12 clusters which are the same as the intersection-passing types

shown in Fig. 6 (this is because trajectories sharing similar starting/ending

positions are likely to be generated from the same DBN). Obviously, this

approach fails to detect any outliers (anomalies) based on the clustering re-

sults. For example, the anomalous trajectories shown in Fig. 5(a)(b) can not

be detected, because they are classified as intersection-passing types north-

to-south and east-to-south, respectively. Actually, this failure is due to an

improper generative model (DBN) used in this scenario, as DBN here encodes

the main direction of motion but neglects the deviation of trajectories. In

contrast, the sequential anomaly detection approach proposed in this paper

is bottom-up and data-driven, not relying on specific model selection.
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Figure 10: ROC curves

For co-occurrence anomaly detection, we cannot identify any existing

method that can be used to accomplish the same task. However, in the part of

co-occurrence event classification, our HMM decoding approach can be com-

pared with a nearest neighbor classification approach. After frequent itemset

mining, we have available the normal patterns of co-occurrence events, shown

in Fig. 7. Nearest neighbor classification classifies each co-occurrence event

to the normal pattern with maximal overlapping items, without considering

the temporal consistency of patterns/states. By optimizing the threshold,

this approach achieves around 60% detection rate and 30% false alarm rate,

which are worse than the results presented for our approach. Figures 11(a)-

(d) show the intersection area of 4 consecutive video frames (t from 930 to

933). Vehicles within the intersection are indicated by red ellipsis and their

moving routes are shown in red arrows. The classification results of the 4 co-

occurrence events by the two approaches, i.e., nearest neighbor classification

and the HMM decoding approach, are both shown in Tab. 1. It is observed

that the HMM decoding approach correctly classifies all 4 time consecutive
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(a) t = 930 (b) t = 931 (c) t = 932 (d) t = 933

Figure 11: Intersection area of 4 consecutive video frames (t from 930 to 933): vehicles

within the intersection are indicated by red ellipsis and their moving routes are shown in

red arrows.

Table 1: Comparison results of nearest neighbor classification and the HMM decoding

approach for the example shown in Fig. 11 (states are shown in Fig. 7).

t 930 931 932 933

Ground truth State 2 State 2 State 2 State 2

HMM decoding State 2 State 2 State 2 State 2

Nearest neighbor classification State 2 State 2 State 3 State 2

co-occurrences to state 2 (see Fig. 7(b)), while nearest neighbor classification

mistakenly classifies the co-occurrence at time 932 to state 3 (see Fig. 7(c)).

As can be seen in Fig. 11(c), the co-occurrence at time 932 has no vehicle to

match to the left-turning route. Instead, there is an anomaly of right-turning

vehicle (shown by a red dashed line) that matches state 3 (see Fig. 7(c)).

Therefore, nearest neighbor classification gives the incorrect result for this

co-occurrence. In contrast, the HMM decoding approach is able to avoid this

error by considering the temporal consistency of states.
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7. Conclusion

With no prior knowledge about anomalous behaviors in a specific video

scenario, it is necessary to follow an unsupervised approach in automatically

detecting video anomalies from the data. Our approach is data-driven and

applicable to many complex video scenes. The major contribution of this

approach is analyzing video events at different levels considering both spa-

tial and temporal context. In detail, considering spatial context, we analyze

events of a single object and events of multiple spatially related objects. Con-

sidering temporal context, we analyze both short time (instant) events and

long time events (including several short time events and their transitions).

Accordingly, anomalous video events can be detected at different levels. In

fact, we can categorize video anomaly in to 4 types, according to different

spatiotemporal context considered, as shown in Tab. 2. We have investi-

Table 2: Anomaly categorization by spatial and temporal context

Context Single object Multiple objects

Short time Point anomaly Co-occurrence anomaly

Long time Sequential anomaly Interaction anomaly

gated the detection of point anomaly, sequential anomaly, and co-occurrence

anomaly. The detection of interaction anomaly involves multiple objects with

complicated temporal logic and will be our future work. Furthermore, we will

consider how to incrementally update the current models as new video obser-

vations stream in, so that the model can efficiently adapt to visual contextual

changes over a long period of time, as in [25].
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