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ABSTRACT

The compression of video can reduce the accuracy of tracking al-
gorithms, which is problematic for centralized applications that rely
on remotely captured and compressed video for input. We show
the effects of high compression on the features commonly used in
real-time video object tracking. We propose a computationally ef-
ficient Region of Interest (ROI) extraction method, which is used
during standard-compliant H.264 encoding to concentrate bitrate on
regions in video most likely to contain objects of tracking interest
(vehicles). This algorithm is shown to significantly increase track-
ing accuracy, which is measured by employing a commonly used
automatic tracker.

Index Terms— Urban traffic video tracking, ROI extraction,
video compression, kurtosis

1. INTRODUCTION

Non-intrusive video imaging sensors are commonly used in traffic
monitoring and surveillance. For some applications it is necessary
to transmit the video data over communication links. However, due
to increased bitrate requirements this means either expensive wired
communication links or the video data being heavily compressed
to not exceed the allowed communications bandwidth. Although
MPEG-2 is the most common deployed standard for such applica-
tions, recently H.264 has started to be used, significantly reducing
the link bandwidth requirement. However, most video compression
algorithms are stil not optimized for traffic video data, nor do they
take into account the possible data analysis that will follow at the
control center. As a result of compression the visual quality of the
data will suffer, but more importantly the tracking accuracy and ef-
ficiency are severely affected.

The field of video object tracking is quite active, with various so-
lutions offering strength/weakness combinations suitable for differ-
ent applications. For urban traffic video tracking most applications
involve a background subtraction component for target acquisition
such as the one developed in [7], and an inter-frame object associa-
tion component such as the one developed in [3].

The subject of standard-compliant video compression specifi-
cally optimized for later tracking has been explored as early as [5]
in the context of MPEG which focuses on concentrating (consoli-
dating) bitrate on a Region of Interest (ROI). More recently in [9]
a more elaborate approach that adds higher level elements such as
motion field correction filtering is proposed in the context of H.263.
In [6] a method of using automatic resizing of ROIs detected by
video encoder motion estimation in conjunction with object tracking

is presented, where the ROI detection relies on motion estimation
capturing true motion (and not for example best block match) for
good results. In [11] a method of using ROIs to focus limited pro-
cessing power on highest gain encoder components in the context of
H.264 is presented. These methods are all low complexity, but rely
on information generated by the encoder (such as motion vectors or
macroblock types) to limit computation.

We propose a computationally efficient ROI extraction method,
which is used during standard-compliant H.264 encoding to consoli-
date bitrate in regions in video most likely to contain objects of track-
ing interest (vehicles). The algorithm is low in complexity and re-
qires limited modification of the video compression module. Thus it
is easily deployable in non-specialized low processing power remote
nodes of centralized traffic video systems. It makes no assumptions
about the operation of the video encoder (such as its motion estima-
tion or rate control methods) and is thus suitable for use in a variety
of systems.

In Section 2 we discuss the effects of video compression on the
efficiency of tracking algorithms, focusing on the distortion of fea-
tures commonly used in real-time video object tracking. We moti-
vate the need for resource consolidation in the context of traffic video
compression. In Section 3 we propose our method of kurtosis-based
derivation of an ROI to guide video compression, for which we show
experimental results in Section 4. Finally we present concluding re-
marks in Section 5.

2. EFFECTS OF COMPRESSION DISTORTION ON
TRACKING

Compression artifacts are debilitating for tracking applications. In
reviews of object tracking presented in [1] and [2] it is shown that
most algorithms focus on three features in video to track objects:
spatial edges, color histograms and detected motion boundaries.

Coding artifacts introduced by motion compensated video com-
pression impact all three of these features – color histograms are
distorted, true edges are smeared and artificial edges are introduced.
As a result the estimated motion field of pixels is sometimes sig-
nificantly distorted. Other artifacts attributed to heavy quantization
are contouring and posterizing in otherwise smooth image gradients,
staircase noise along curving edges and “mosquito noise” around
edges. Artifacts attributed to the time aspect of video are motion
compensation errors and quantization drift. Compensation errors
arise from the fact that motion compensation does not aim at find-
ing the true motion of objects but rather the most similar object in
a small search area. For example, heavily quantized but motionless
areas such as the road surface will flicker with time, appearing as
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Fig. 1. Compression effects on vehicle tracking. The top row is a
sample of uncompressed video, its error image vs. the background
(median frame), and its intensity histogram respectively. The middle
row video was compressed at a ratio of 3 : 102, the bottom row at
3 : 104.

having different intensity. Subsampling of chroma components (typ-
ically from 4:4:4 to 4:2:0) in the YUV colorspace further reduces the
accuracy of color histogram based tracking.

These artifacts and distortions decrease the accuracy of com-
puter vision based tracking algorithms. Fig.1 offers examples of
such distortions. The left column shows sample images from video
sequences, the top being uncompressed, the center compressed at a
ratio of 102 : 3 and the bottom at a ratio of 104 : 3. For each video
a background model is computed by taking the median intensity of
each pixel over time, which is then subtracted from each frame to
give an error image (shown in center column) – this error is used
to locate objects in each frame (even if they have not moved since
the previous frame). The pixel intensity histograms of the images
(shown in right column) are used to associate objects from different
frames, thereby tracking each object across time. Note that block-
ing artifacts due to quantization are much more pronounced in the
higher compression video. Distorted edges and artificial smudges in
the difference data impair gradient based tracking efforts. The inten-
sity histogram is seen to be significantly distorted for the 104 : 3 case
– the new peaks introduced make histogram based tracking more dif-
ficult.

3. PROPOSED METHOD

The proposed algorithm optimizes bit allocation for video compres-
sion such that the available bitrate is consolidated on regions that are
expected to contain objects of tracking interest. The algorithm de-
rives (and maintains) the ROI by a non-parametric model based on
the temporal distribution of pixel intensities. The goal is to isolate a
map of pixels which in a given analysis window show a sharp inten-
sity variation. Rather than regions undergoing constant change (such
as trees, fountains or reflections of the sky), we are interested in re-
gions undergoing periods of dramatic change such as roads (whose
intensity changes due to passing cars).

In order to detect such regions we use the kurtosis of intensities

for each pixel position over time, defined as

κ(x) =
μ4

σ4
=

1
n

∑n−1

i=0
(xi − x)4

( 1
n

∑n−1

i=0
(xi − x)2)2

− 3. (1)

where x is the intensity of a pixel over time at the same spatial po-
sition over n samples, and x is the mean value of the intensities. By
this normalzied definition the Gaussian distribution has an excess
kurtosis of 0. A higher kurtosis value indicates that the variance
of a given distribution is largely due to fewer but more dramatic
changes, whereas a lower value indicates that a larger number of
smaller changes took place. In this aspect kurtosis, used for a sim-
ilar method of feature extraction in [10], is a better indicator of the
desired behavior than variance.

To identify a threshold that will help us in isolating areas of in-
terest we follow a probabilistic approach in modeling areas of inter-
est. Video capture noise is modeled as additive Gaussian, which is
known to have a kurtosis of 0. Therefore, regions of the scene with-
out motion should have excess kurtosis 0. Movement due to objects
such as trees is modeled as a Mixture of Gaussians (excess kurto-
sis of 0 by the additive property of kurtosis). The desired type of
motion will be modeled as a Poisson process, which is commonly
used for traffic analysis and is distributed exponentially (with excess
kurtosis 6). Therefore we set our model as X = N + M , where N
is Gaussian noise and M is any movement that occurs on top of it.
M is classified as V (motion to be tracked, such as vehicles) or T
(motion to be ignored, such as trees). We set M = {T if κ(X) ≤
threshold, else V }. The ROI is set to 1 for V and 0 for T type
pixel positions .

While an online optimization to set the kurtosis threshold is pos-
sible within a hypothesis testing framework, given the low compu-
tational cost requirement of the system a fixed threshold approach is
proposed. We therefore propose to use the threshold of 3, the mid-
point between the two models excess kurtosis. Note that this method
of modeling traffic as a Poisson process is suitable for common ur-
ban and highway traffic, but will not perform well in extreme cases
of bumper to bumper congested traffic.

During encoding, for each frame the extracted ROI is used to
suppress the Displaced Frame Difference (DFD) that is encoded.
This is done by implementing the following change in the rate dis-
tortion optimization:

mi = argmin{wd
i ∗Distortion + λ ∗Ratei} (2)

where wd
i is set equal to 0 for areas outside the ROI and equal to

1 for those within. Note that this step is necessary to code “zero
motion” blocks outside the ROI – these blocks cannot simply be
skipped given H.264 spatial motion vector prediction. While such
a binary scheme is not necessarily optimal compared to one with
more degrees of flexibility, it is preferable due to the negligible extra
computation it adds to the overall system.

4. EXPERIMENTAL RESULTS

The video compression experiments presented herein have been per-
formed using original and modified versions of the JM (H.264/14496-
10 AVC Reference Software) v16.0. Given that the primary interest
is in tracking vehicles, in our experiments the reconstructed results
are analyzed for performance within the manually derived ROI.

The “I-90” sequence (720x480 @30Hz) was shot on DV tape
and is therefore high quality. The “Camera6” content (640x480
@15Hz) was acquired under the NGSIM license courtesy of the
US FHWA and was MPEG4 compressed during acquisition, and
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Fig. 2. Sample frames from “Camera6” and “I-90” sequences (top),
their manually segmented ROI for analysis (center) and automati-
cally extracted kurtosis-driven ROI for encoding (bottom).

is significantly noisier. Kurtosis estimation was initialized and up-
dated using 3 second windows (one update per temporal window).
While the experiments were executed in MATLAB, the computation
and memory requirements are low enough for mobile and embedded
platform implementations. The modifications to the H.264 encoder
were compartmentalized enough to make adding the algorithm to
mature products feasible.

In Fig. 2 we show some sample detected and manually extracted
ROI. Note that in the figure “I-90” has a detected ROI much closer to
the manually extracted version than “Camera6” – this is because the
observer manually extracting the ROI was asked to mark “areas of
interest to urban traffic”, whereas the kurtosis-based ROI detection
algorithm accumulates areas where cars have actually been to within
its analysis window. This difference is a strength for the detector in
that it focuses the ROI to region where activity has been reported and
not a region where activity could take place.

In order to analyze total distortion to tracking we focus sepa-
rately on two separate metrics: one to measure the degradation of
a trackers ability to find targets on each frame and the other to its
ability to associate these targets as the same object across frames.
For the first the “Bounding Box Overlap Ratio” (BBOR) metric is
used. This metric maintains a simple median background model
(updated once per window), which it uses for background subtrac-
tion. The resulting foreground on each frame is thresholded using
the method presented in [8] and processed with morphological op-
erators before bounding boxes (BB) are extracted. For comparing
sequences S1 (baseline) and S2 (compressed), the BBOR is defined

as BBOR = |BB(S1) ∩ BB(S2)|
|BB(S1)| , where ∩ denotes the intersection

and || the cardinality of the sets. Since our main interest is in tracking
vehicles, the manual ROI, which corresponds to regions vehicles can
be found such as roads and parking lots, is used to mask the video
after compression. In our experiments this simulates a specialized
tracker which targets only vehicles.

A higher value of the BBOR indicates that targets (not necessar-
ily the same targets from frame to frame) were found in more sim-
ilar spatial locations between the two sequences being compared.

In Fig. 3 BBOR results comparing pre-compression performance
to that of default encoding vs. encoding focusing on detected and
manual ROIs are presented. Note that at higher bitrates our algo-
rithm provides significant bitrate reduction given encoder sensitivity
to noise and peripheral “uninteresting” motion (trees, fountains) –
bitrate savings of up to 75% for “I-90” and 50% for “Camera6” were
seen with negligible difference in BBOR. While such large savings
are not maintained at lower bitrates, even at the lowest analyzed bi-
trate results never show below 5-10% savings. The larger savings
seen in “I-90” compared to “Camera6” can be attributed to “I-90”
having a simpler and smaller ROI and with smaller disparity between
the detected and manually extracted ROIs.

For the second analysis the “Mean Shift” tracking method pro-
posed in [3] and implemented in the OpenCV project is used. The
metrics used in this case are number of “false positives” and “false
negatives”. Given that various traffic tracking applications can pre-
fer one type of error to the other a separate analysis is presented
for each. Note that the measurements for these metrics are done
on an observation basis, and while the experiments have been con-
trolled by averaging repeated tests some degree of subjective vari-
ability is expected. In Figs. 4 and 5 the number of errors in sample
Mean Shift tracking in uncompressed and compressed sequences are
shown. Note that in all cases an increase in errors is observed for the
mid-range bitrates, where the error numbers go up from high to mid
rates and then back down for the low rates. This behavior can be
attributed to the smoothing effect of coarse quantization removing
error-causing features from the video as the bitrate goes down. It
is interesting to observe that the increase in errors corresponds to
100Kbps - 1Mbps range, which is the operating space that would
be commonly used for acceptable visual quality applications. Also
note that for the “Camera6” sequence, where the detected and man-
ual ROIs differ, the detected ROI mostly outperforms the manual
ROI.

In [4] a quality metric is proposed for tracking that combines
scores for edge sharpness, color histogram preservation and motion
boundary sharpness of tracked silhouettes. While this score also
covers all features most significantly degraded by video compres-
sion, our metrics were chosen for their simplicity. Complex metrics
which analyze the sharpness of target segmentation or the stability
of inter-frame association are available but not universal.

5. CONCLUSION

We have proposed a novel method of using pixel intensity kurtosis
to consolidate video compression bitrate on an ROI incorporating
tracked object trajectories. We have demonstrated that such an ap-
proach can lead to up to 75% bitrate savings for comparable tracking
performance, and have shown that an ROI derived by our method of
extraction results in performance close to a manually derived one.
The reduction in required bandwidth coupled with its relatively low
processing and memory overhead make the algorithm attractive for
deployment on remote nodes of centralized traffic video tracking ap-
plications. The next step is the derivation of online low-complexity
optimization methods for the kurtosis threshold and the number of
frames needed in the analysis window.
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(a) “I-90” BBOR

(b) “Camera6” BBOR

Fig. 3. Bitrate vs BBOR for “I-90” and “Camera6” sequences.

(a) “I-90” false positives

(b) “Camera6” false positives

Fig. 4. “I-90” and “Camera6” tracking false positive errors as a func-
tion of bitrate.

(a) “I-90” false negatives

(b) “Camera6” false negatives

Fig. 5. “I-90” and “Camera6” tracking false negative errors as a
function of bitrate.
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