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ABSTRACT 
 

In this paper, an automated algorithm to flatten lines from Atomic 

Force Microscopy (AFM) images is presented. Due to the mechan-

ics of the AFM, there is a curvature distortion (bowing effect) 

present in the acquired images. At present, flattening such images 

requires human intervention to manually segment object data from 

the background, which is time consuming and highly inaccurate. 

The proposed method classifies the data into objects and back-

ground, and fits convex lines in an iterative fashion. Results on real 

images from DNA wrapped carbon nanotubes (DNA-CNTs) and 

synthetic experiments are presented, demonstrating the effective-

ness of the proposed algorithm in increasing the resolution of the 

surface topography.      

 

Index Terms— curve fitting, nanotechnology, polynomial 

approximation, object detection. 

 

1. INTRODUCTION 
 

AFM functions by bringing a cantilever tip in physical contact with 

(or close proximity to) the sample, revealing nanometer scale to-

pographical information [1]. Fig. 1. shows a block diagram of an 

AFM. The repulsive force from the surface applied to the tip bends 

the cantilever. The amount of bending is measured and fed back to 

control the vertical movement of the sample in order to keep the 

contact force constant. The vertical movement follows the surface 

profile and is recorded as the surface topography. AFM is used to 

capture images of cells, materials, biomolecules etc. An example 

of a typical AFM image of DNA-CNTs is shown in Fig. 2. 

Due to the mechanics of the AFM, there is a curvature distor-

tion (bowing effect) present in the acquired images. This can be 

observed in Fig. 2, where intensities are low in the middle of the 

image while they are high at the sides. The tip follows arc-like 

lines in the image, creating a spherical or parabolic shape, depend-

ing on the scanner [2]. To compensate for this (known as line flat-

tening or plane fitting), objects in an AFM image are manually la-

beled to generate an exclusion mask, which usually is rigid (either 

parallelogram or ellipse) and may not adequately represent the 

shape of the sought after object. The data of each row in the image 

outside the mask are fitted by a polynomial, which is subsequently 

subtracted from all the data values of the line. 

With respect to the existing procedures, the processing of AFM 

images of small objects (such as DNA-CNTs) can be substantially 

improved for the following reasons:  

(i) it is labor intensive and its automation is highly desirable;  

(ii) the manual labeling of the objects in the image is highly inac-

curate, since the objects are not easily distinguishable in the 

unflattened image and current software only allows for regu-

lar object shapes (i.e., circles, squares, etc);  

(iii) with the existing line flattening techniques, the fitted polyno-

mials are non-convex, in disagreement with the intrinsic phys-

ics, thus reducing the accuracy of the recovered surface topo-

graphy. 

In this paper, a method to automatically and accurately fit con-

vex polynomials on background only points of a line is presented.  

In tandem to select the background points the algorithm iterates be-

tween fitting and automated classification of background and ob-

ject points on a line.  It is superior in comparison to the techniques 

used so far because it speeds up the process, uses less human re-

sources, and produces more accurate results. 

 
 

Fig. 1. AFM block diagram (WikiPedia Foundation). 
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Fig. 2. AFM image of DNA-CNTs (indicated with 3 arrows). 

 



This paper is organized as follows: Section 2 provides the 

problem formulation and discusses possible solutions; Section 3 

discusses the proposed algorithm in detail. Section 4 offers the re-

sults and discussion while Section 5 concludes with summary 

comments and possible future extensions. 

 

2. BACKGROUND AND PROBLEM FORMULATION  
 

To demonstrate the significance of convexity and object point ex-

clusion, an illustrative synthetic example of a nanotube imaged by 

an AFM is shown in Fig. 3. The dash-dot line represents the actual 

data recorded by the AFM, containing the bowing artifact, and the 

short-dashed line represents the recording if there were no curva-

ture distortion. Due to tip convolution [1], there is blurring at the 

object boundaries. In an ideal scenario, the recorded height of the 

tube should be equal to the recorded width but due to the tip con-

volution problem the width is highly inaccurate. Therefore, the 

goal is to recover the height of the object while removing the 

bowing effect. The dashed line represents a non-convex polynomi-

al least squares (LSQ) fitted to the recorded curve. Subtracting this 

polynomial from the recorded line would completely remove the 

object in the flattened image, and the information of its height 

would be lost. It will also create dark patches in the two minima. 

Enforcing convexity will ensure a better approximation (solid line) 

of the curvature distortion, and also will avoid possible exclusion 

of the object in the flattened image. 

To the best of the authors’ knowledge there is no direct litera-

ture on the topic of simultaneous and automated object exclusion 

and line flattening in AFM images. An apparent global 2D solution 

would be to fit parabolic surfaces on the whole image [3]. Howev-

er, some artifacts in AFM images are intrinsic to the particular 

moment of operation, like vertical scanner drift, its internal non-

linearities etc, and hence cannot be adequately modeled with a pa-

rabolic 2D surface. In [4] a Gaussian Mixture Model is employed 

to model a smooth, and distinguishable from the signal, back-

ground. In AFM, neither the background is smooth (the necessity 

of processing each line is stressed previously), nor it can be as-

sumed that the background and foreground pixels are distinguisha-

ble only by their values (as can be seen in the original AFM image 

in Fig. 2). 

There is however a relation to the MRI shading removal prob-

lem. However, in [5], [6] either the noise is ignored, or a Gaussian 

signal distribution is assumed, and hence they are not applicable 

here. The algorithm presented in [7], despite being formulated for 

images, can be applied to the 1-D case (to accommodate the AFM 

problem), but histogram-based entropy estimation is not robust in 

the case of large object coverage, and the optimization routine 

(Powell’s method) does not enforce any convexity constraints. 

Each observed scan line can be modeled as: 

yi(x) = si(x) + pi(x) + ni(x), i=1,…, N,                (1) 

where yi(x), si(x), pi(x), ni(x) represent the raw data, signal, (con-

vex) polynomial, and noise, respectively; x is the horizontal coor-

dinate, i corresponds to the line number in the image, and N is the 

total number of lines. An example is shown in Fig. 4.  

The overall objective is to 

estimate si(x) given yi(x).                           (2) 

To find signal points in the line one could resort to image based 

object detection or segmentation. However, the presence of noise 

and the limited a priori knowledge of the object’s shape and size 

render both methods not applicable as general solutions.  

Since si(x) cannot be explicitly estimated, the problem can be 

best formulated as  

estimating pi(x) given yi (x),                        (3) 

where pi(x) is a convex polynomial.  

 

3. PROPOSED APPROACH 
 

Each line in an AFM image is flattened iteratively in a two step 

process: (i) K-means based classification into object and back-

ground points, followed by (ii) convex polynomial fitting on the 

background points. In more detail the steps are: 

1. For x in Background, fit a convex polynomial ( ) ( )k

i
p x (k 

is the iteration number) and subtract it from the data  
( ) ( ) ( )( ) ( ) ( )k k k

i i i
z x y x p x= − .                     (4) 

Initially (1) ( ) ( )
i i

y x y x≡ , and all points are considered as 

background. 

2. Assuming a known noise variance 2

i
σ , decide if the line 

has objects based on: 
( ) 2var( ( ))k

i i
z x α σ> ⋅ ,                       (5) 

where α  is a user given parameter. If Eq. 5 is satisfied 

continue, otherwise go to step 6. 

3. For all x, using the K-means algorithm, cluster the signal 
( ) ( )( ) ( ) ( )k k

i i i
c x y x p x= − ,                      (6)  

into Object and Background classes. 

4. Increase the iteration number k, and for x in Background 

)()(
)(

xyxy i
k

i = .                           (7) 

5. Repeat steps 1 to 4. 

6. No object data further detected, output the polynomial 

from the last iteration 
* ( )( ) ( )k

i i
p x p x= ,                          (8) 

and the x belonging to the final Object class. 

In the following steps 1 and 3 are detailed, and noise variance 

estimation methods for step 2 are discussed. 

 
 

Fig. 3. Bowing effect illustration. 
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3.1. Fitting Convex Polynomials 
For fitting convex polynomials the following methods were tested: 

(a) Constrained optimization with Sequential Quadratic Program-

ming (SQP) [8], or sum-of-square (SoS) polynomials [9]; however, 

SQP might not converge if the initial guess is not close to the solu-

tion, and SoS is computationally very intensive. (b) Fitting ellipses 

[10] which are easy and fast to implement; however, they are re-

stricted to only second degree curves and hence may not fit ade-

quately the boundary points. (c) Direct least square fitting of con-

vex polynomials as in [11]; this method, however, did not yield ac-

curate results. The SQP method was finally chosen for its accuracy 

and computational efficiency. 

 

3.2. K-means clustering 
The variance test in step 2 is chosen since it can detect even small 

objects. The larger the object, the worse the first fit, the greater the 

variance, thus detection confidence grows with the object size, 

which is expected. The flattened line in Eq. 6 is clustered in Back-

ground and Object classes. This is an 1D rather than a 2D cluster-

ing procedure, given that the points are clustered only by their 
( ) ( )k

i
c x  value, not their x position. The background points should 

have lower values than the object points, and therefore the cluster 

with the smallest centroid is marked as “background”, while the 

one with the largest is labeled as “objects”. Since K-means cluster-

ing is sensitive to initialization, the min and max of ( ) ( )k

i
c x  are 

chosen to be the initial centroids. The points marked as objects are 

excluded from the signal and a new polynomial is fitted.  

 

3.3. Noise estimation 
Estimation of the noise variance is of critical importance. In the 

current incarnation of the algorithm, the noise variance is estimated 

on a per line basis. After the first fit, the polynomial is subtracted 

from the original data, and local variances are found using a sliding 

window. The location of the peak in the local variances histogram 

is used as the estimated noise variance.  This method may not per-

form well if there is large object coverage in a line.  In the opposite 

case a global approach is utilized, where each line in an image is 

first fitted with a polynomial, then the variance of each line is 

measured, and the line with the minimum variance is used with the 

above procedure to find an estimate of the noise variance.  Alterna-

tively, an approach similar to [12] can be used; however in this 

case difference operators are used to identify edges in images 

which are very susceptible to the noise in AFM images.  As a final 

option, the user can supply a variance estimate.  

 

4. RESULTS AND DISCUSSION 

 

To obtain the results the algorithm of section 3 was implemented in 

MATLAB (The Mathworks, Inc). The optimization toolbox and 

the function fmincon (which utilizes an SQP solver) were used to 

fit convex polynomials of degree two to five. Initially a polynomial 

was LSQ fitted to the data.  If this polynomial was not convex the 

fmincon routine was used to find a convex polynomial with initial 

starting coefficients of the LSQ fitted polynomial.  The latter is 

used to ensure a good starting point, and improve the convergence 

of the SQP algorithm. In the subsequent sections, first results on 

flattening Fig. 2 are presented, followed by tests on synthetic raw 

line data to highlight the robustness of the algorithm. 
 

 

 
 

 

4.1. Flattening of AFM images of DNA-CNTs 

The image of Fig. 2 was used as a test image. 3rd degree polyno-

mials were fitted to each line without any object exclusion (auto-

matic or manual) and subtracted from each line, as shown in Fig. 5 

left, and with the proposed algorithm, shown in Fig. 5 right. The 

height of the object at pixel location (139,390) (rightmost arrow) 

was 398 in the raw image while in the flattened images, it was 

413.8 in Fig.5 left and 425 in Fig. 5 right, respectively. (Please no-

tice in Figs. 2 and 5 that the minimum values are negative.). For 

clarity, Fig. 6 zooms in around this object. In addition to the accu-

rate height recovery, we see that the dark patches around the object 

in the top image, Fig. 6, which are an artifact of bad fitting and in-

troduce a non-existent dent-like deviation of the background, have 

disappeared on the bottom image, Fig. 6. This is a clear indication 

that the fitting is correct, since Fig. 3 showcases how bad fitting 

creates dark patches. Further experiments with more DNA-CNT 

images exhibited similar performance. 

 

4.2. Flattening of synthetic AFM line data 
Raw AFM lines were synthesized following a similar construct as 

in Fig. 4. Results obtained by the proposed algorithm on a synthet-

ic ( )y x  are shown in Fig. 7. In this figure it can be seen that: (i) 
*
( )p x  of 2nd degree (dashed curve) provides a very accurate esti-

mate of the original p(x) (solid); (ii) the convexity constraint is ne-

cessary, since the 5th degree unconstrained curve (dash-dot) com-

pletely obfuscates the object; and (iii) the K-means based classifi-

cation (‘+’ markers) adequately identifies the object.  

For more exhaustive experiments, various lines were generated 

with p(x) a binomial p(x)=ax2+bx+c, with (a, b, c) taking values 
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Fig. 5. Image in Fig. 2 (left) flattened with 3rd degree polynomials 

without any object detection; (right) flattened with 3rd degree po-

lynomials using the proposed algorithm. 
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Fig. 6. (top), (bottom) detail of left and right image of Fig. 5 re-

spectively, to highlight the ability of the proposed algorithm to 

segment the data and eliminate negative contrast regions (ellipse). 
 



from the set {(140.5, -0.5, -100), (60.5, -0.5, -50), (80.5, -70.5, -

50)}, and a pulse s(x) of height A {20, 75, 200, 400}, width w {10, 

20, 100, 300} and delay L {50, 100, 200}. Gaussian random noise 

of zero mean and variance σ2 {4, 16, 100, 400} was also added.  

For a given noise variance, while the other parameters remained 

the same, the algorithm was run 20 times by fitting 2nd and 5th de-

gree convex and 5th degree unconstrained polynomials. At each tri-

al the height of the recovered signal defined as s*(x)= y(x)-p*(x) for 

x in Object, was estimated by its average A’=E{s*(x)}. The final 

estimate A* was the average of all 20 trials A*=E{A’}.  

 In Fig. 8 the ratio of estimated height and pulse height (A*/A) 

is shown as function of the ratio of pulse height and noise standard 

deviation (A/σ) fitted with the three polynomial types. It is evident 

that enforcing convexity is important since the unconstrained poly-

nomials fail to recover the signal and hence register large errors. 

On the other hand, despite the fact that the lines were generated 

with a binomial, fitting 5th degree convex polynomials recovers the 

signal in low signal to noise ratios (A/σ <10), while 2nd degree po-

lynomials recover the signal more accurately in larger signal to 

noise ratios. It should be noted that in 3% of all trials for which σ2 

was large, A was small and w was large, we failed to recover the 

signal with accuracy greater than 70%.  
 

5. CONCLUSION 
 

In this paper a novel algorithm for the automatic line flattening of 

AFM images was presented. The algorithm offers distinct advan-

tages when compared to previous solutions, since it accommodates 

convex polynomials thus increasing the accuracy of the fit, and can 

automatically detect the presence of objects and segment them us-

ing a K-means algorithm.  Results on real as well as synthetic data 

were presented that showed the robustness of the proposed method 

and its ability to resolve the relevant features of the objects. Line 

flattening is an integral part of AFM image analysis and precedes 

any other operation such as tip deconvolution, feature extraction, 

etc. Tests with more images will be performed in the future, as 

well as, comparisons to other methods, such as the one of [7]. 
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Fig. 8. The ratio A*/A, for various polynomials, as a function of 

A/σ, fitted with 2nd and 5th degree convex, and 5th degree uncon-

strained polynomials. 
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Fig. 7. An example line fitted with various polynomials. 

 


