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ABSTRACT

In this paper an algorithm to detect and elastically match the con-
tours of the epicardial walls of the left ventricle (LV) in cardiac
phase-resolved 2-D Magnetic Resonance (MR) images is presented.
For both tasks, dynamic programming (DP) is used. A mask con-
forming to the six segment model of the LV is fitted on a reference
image and propagated utilizing the elastic matching information. At
its present form the algorithm requires minimal parameter correc-
tions among different sets of cine MRI images. Future extensions
include comparisons with contours hand labeled by imaging experts.

Index Terms— Magnetic resonance imaging, detection, Dy-
namic programming, registration, matching

1. INTRODUCTION

To determine insufficient blood circulation, the most common cause
of heart attacks, short axis blood oxygen-dependent (BOLD) MR
images of the LV are used. A six segment model is typically used to
study the regional blood supply in the LV [1]. By examining the sig-
nal intensities of different LV sections in an MR image, it is possible
to identify regional oxygen deficits, and the branch of the coronary
artery that is affected [2]. Currently, each image is segmented by
hand, a rather tedious and time consuming effort. Therefore, diag-
nosis has been generally based on a single image. Evaluating the
full set of cardiac phase-resolved BOLD images for regional perfu-
sion deficits, can increase the confidence of the diagnosis [3,4].

There has been a great interest in computer-assisted myocardial
contour delineation algorithms, since human effort can be reduced,
and unbiased and consistent results can be produced [5]. Three major
approaches exist: (i) active contour based methods where an initial
contour is refitted near strong local image features by minimizing an
energy function [6]; (ii) deformable parametric models with limited
degrees of freedom [7, 8]; (iii) statistical description and learning
based methods of local shape and brightness [9]; and combinations
of the above [10, 11]. DP optimization has been used in medical
imaging; for example in detecting, tracking and matching LV bound-
aries [12], and matching skeletonized angiographic images [13].

In this paper, a DP approach is presented to accurately detect
the endocardial and epicardial boundaries of the LV, as well as, elas-
tically match the epicardial boundaries, in polar coordinates. Sec-
tion 2 discusses the detection of the LV boundaries, while section 3
presents the elastic matching of the epicardial boundaries. In sec-
tion 4 test results are given, and finally, in section 5 conclusions and
future extensions are offered.
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2. CONTOUR DETECTION

Electrocardiogram (ECG)-gated, short axis cine (cardiac phase-
resolved) magnetic resonance images are acquired within a single
breath-hold (15 second). Considering the application of the pro-
posed system, the following realistic initializations are made from a
user who: (i) initializes the algorithm by determining an ROI thus
locating the LV in the MR image, (ii) selects the initial reference
image (typically the end-systolic frame), (iii) selects an initial center
of the LV blood chamber on the reference image, (iv) draws an
initial epicardial contour on the reference image and (v) draws a line
from the center of the LV chamber to the epicardial border. This line
is used to generate the first 6 segment model mask. In the following,
ct(8), is the point s of the contour ¢; of image ¢ in polar coordinates.

Due to the myocardium’s circular shape in the short axis images,
an example of which is shown in Fig. 1, the detection is performed
in polar coordinates. The sought-after contour is located near image
edges and has a linear shape (when the origin of the polar coordinate
system is placed in the middle of the LV, as seen in Fig. 2).

2.1. Detecting the epicardial contour

The contour 7(¢) is detected in polar coordinates by minimizing an
energy cost function similar to [5, 14]. The total cost Fy.: of the
contour 7(¢) is given by

N

Eior(r(#)) = > _(Es(r(¢),¢) + Eu(r(¢), ¢)

=1
+ EZ (T(¢)7 ¢) + EP(T(¢7 ¢))7
where NV is the total number of rays used to transform the image into

polar coordinates. Subsequently each constraint is addressed.
Smoothness constraint:

Eu(R{ev(s—1)}, R{e()}) = ws (R{‘”(S ) R{‘”(S)})

fnorm

where w; is the weighting factor, and R{c:(s — 1)}, R{c:(s)} are
the radii of the points (s — 1), and s on the contour. The normaliza-
tion factor fporm i necessary to accommodate various MRI spatial
resolutions and is equal to 1% of the average radius R{ci} of the
hand-labeled contour.

Temporal constraint: This constraint allows for small tempo-
ral changes over the whole contour but penalizes large ones. The
cost Er(R{ct(s — 1)}, R{ce(s)}) is O, unless |R{ci—1(s)} —
R{ci(s)}| — ARmaz > 0; then it is equal to wy - (|R{ct—1(s)} —
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R{ci(s)} — ARmax). we is a weighting factor; |R{c;—1(s)} —
R{c¢(s)}]| corresponds to the distance between the two contours at
the same point; A R4 is the maximum change allowed and is used
to limit the effect of small differences on the cost.

Image constraint: Due to the various tissue boundaries and in-
terfaces there is variability in the desired edge location and the corre-
sponding gradient value. The different edge profiles at the epicardial
boundary can be seen clearly in Fig. 1. Different normalization fac-
tors are estimated on a the first image, and are utilized according to
the sign of the edge operator’s output. Assuming an initial hand-
labeled contour, the following normalization factors are defined

fros = mean(maz (W (ci(s)))),
for all s s.t. |maz(W(ce(s)))| > |min(W(c(s))]
fneg = mean( min(W(ct(s)))),

for all s otherwise. W(-) is a 1 x 5 search window centered at
c¢(s). Subsequently, the output of the 1-D gradient operator of [15]
is normalized with the above factors according to its sign. The cor-
responding cost is

Eq;(T7 ¢) = —W; " |Qno'rm (7‘7 ¢)| ’

where w; is the weight, and Qporm (7, ¢) is the normalized edge
operator output.

Proximity constraint: To penalize cases where the algorithm is
attracted by strong edges, (for example around the angle 75 in Fig. 2)
the number of edges between the candidate contour and an internal
”boundary” (see below) are used as a constraint,

R{m(¢)}

Z Mpt (777 ¢)7

T=r

Ep(r,¢) =wp - — -

norm

where Mp: (7, @) is 1if |Qnorm (7, ¢)| > tp and 0 otherwise (¢, is a
user selected threshold), and R{m(¢)} is discussed below.

To distinguish between the epicardial and endocardial contours,
the search area in each case is controlled. A DP algorithm is em-
ployed that finds a path through the polar image, creating an internal
”boundary”, which is smooth (as before) and not close to the edges
(since the muscle texture is smooth), using the following constraints

Emuscle(s) = Wem * ‘QWOTm(ﬁ{Ct(S)L R{ct(s)}N
o - (R{Ct(s -} - R{Ct(s)})

fnorm

where wem,wsm are the weights of the edge cost, and the smooth-
ness constraint respectively, frnorm is the normalization factor de-
scribed above, and ¥{c:(s)} corresponds to the angle of point s in
the polar image.

2.2. DP implementation

For a point (7, ¢1) along a ray with angle ¢, the cost is
EO(T7 @k) = min {Eo(rllh(bkfl) +E5(TP7T)}
rp€[1,N]
+ Ei(r, o) + Ei(r, dr) + Ep(r, ¢r),
where NV is the number of points in a ray. This propagation equation

is used to find the cost of all points in a ray (r = [1, N]) for all rays
ok, (k = [3, M — 1]), with M the number of rays. Starting points
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for the first rays (k = 1, 2) are initially fixed. In the last ray ¢, the
cost for closing the contour Es (r, rs) must be considered, i.e.,

EO(T, dm) = rpren[iII,IN] {EO(TP: ®p) + Es(rp,7)}

+ Ei(r,ém) + Ee(r, d01) + Ep(r, dar) + Es(r,75).

This last equation is used to calculate the cost of all points in the last
ray, where 7 = [1, N]. The best contour is obtained by backtracking
the minimum cost point along the last ray.

To find the global optimal solution, the contour of all possible
start points s = [1, N],k = 1,2 must be determined. Finally,
the starting point with the minimal total cost is chosen. To reduce
computations, the user initializes the algorithm by selecting a start
region that has a clearly visible contour with a single strong edge.

2.3. Detecting the endocardial contour

To detect the endocardial contour, a similar DP algorithm is em-
ployed. However, the temporal constraint is excluded due to its rapid
movement. The cost function used is

Ei(r,¢) = Eis(r,8) + Eip(r,8) + Eir(r, ¢),

where the smoothness and physiological constraints are defined
above, while E;1(r, ¢) = wir |Qnorm (7, @)|. The advantage of this
method is that the protruding papillary muscles can be excluded.

3. ELASTIC MATCHING

Oxygenation deficits in the LV appear as small regional intensity
variations. It is therefore critical to elastically register subsequent
images. The task of this section is to match contour points among
two frames. The goal here is to propagate the 6-segment AHA
model, therefore only the epicardial LV contours are matched. How-
ever, the same algorithm can be applied for the endocardial contours.
Finally, the matched contours can be used as landmarks for spline
based registration algorithms [3,4].

¢t, ct+1, and c;—1 denote the current, future, and previous con-
tours respectively. Every point s of a contour c¢(s) consists of an x-
and y-components (x+(s), y+(s)) in the cartesian

In [12], the elementary constraints for matching two contours
are given as:

o Uniqueness constraint: Every element of contour c; has one
match in the next contour ¢;41.

e Monotonicity constraint: No crossing displacement vectors
are allowed. However, multiple points of contour ¢; can point
to the same point of ¢y 1.

e Gaps: Unmatched regions on c¢1, should be small.

e Displacement smoothness: The displacement vectors of con-
secutive points should vary smoothly.

The above constraints consider only shape related information; pixel
values and temporal information are ignored. Furthermore, no pro-
vision is taken with respect to the extent of rotation. Therefore, the
following constraints are introduced:

o Smoothness between consecutive contours: A temporal con-
straint is used to enforce smoothness of the displacement vec-
tors of consecutive matchings.

e Avoiding rotation: To avoid rotation in the matching result,
the length of the displacement vectors is considered.

e [ntensity: Signal intensity differences in the polar image are
included in the optimization.
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3.1. Energy cost function

Expressed in mathematical form the energy cost for matching a point
Ct(S) to Ct+1 (k‘) is

E(ci(s), cev1(k)) =

HDt(s) Di(s — 1)H

ws Lit1Liy1
> > Mi(s, k) - Mi(s —1,p) - (k —p — 1)
WsN k=1 p=1 )
w3
Ure 20 vl IIOREZO!
w .
2 min { SAD(O(Ipe. B{ce()}.9{eu(s)))

— O(Ipisr, R{ci1(k)} +r,9{cerr(k)}) ) }.

The terms w1, . .. ,ws and win, . . ., wsn denote the weights and the
normalization factors for the displacement vector smoothness, gap,
rotation, temporal, and intensity constraint, respectively. M; and
Bt(s) are the matching unit and displacement vector as in [12]. The
normalization factors allow for the weights to be independent of the
sizes of the contours, and the resolution of the MR images.

To find a prediction for the displacement vector Upreq(s) in the
4th term of Eq. 1, the displacement vectors of the previous matching
Dy_1 are utilized. However, since gaps are allowed there may be
one, none, or many point(s) of ¢;—; pointing to c¢;(s). Analytically,
these three cases are:

Case I: Exactly one point of ¢;—1 points to c¢(s):

Upred(s) = Tprev(s),

where Uprey ($) is the displacement vector from point ct—1 to c¢(s).

Case 2: No point of the previous contour c;—1 points to c¢(s).
The predicted displacement of this point is computed by a weighted
average of the neighboring displacements,

M 7, (s) v, (s)
Tprevm (5) Tneaty (8)
mz dprenls) T 2 drest ()
o
Fprea(s) = .
dee'u(S)

_N ’
dneat(s)
where M is the number of points on c;—; which point to ¢;(j), for
j < s. N is the number of points on c¢;—1 which point to c(I)
of ¢i(s), for I > s. dprev and dpest are the distances defined as,
dprev = 8 — j and dneat =1 — s.

Case 3: Multiple points of ¢;—1 point to c¢(s),

Z Uprevm (8)
M )
where M is the number of points on c;—1 that point to c¢(s).

In the last term of Eq.(1), SAD is the sum of all absolute el-
ement values of a given matrix. The function @(f e, 7, P) is used
for picking pixel values of the polar image around the location
Hee(s)}, R{ce(s)}. The pixel values can be weighted by a mask.
Ips and T pr+1 are the Gaussian smoothed (¢ = 1 and support 5)
Ip: and Ipe41, respectively.

Additionally, intensity changes (due to patient movement or ac-
quisition parameter adjustment) are also accounted

Upred (5)

fptﬂ = (Ipt+1 — (Ipe41 — ITH)) * hgauss,

where Ip; 1 and Ip; are the intensity averages of the myocardium
area in all polar images.
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Due to the low resolution of cine MRI and BOLD imaging and
the relative low contrast, the contour detection of the previous sec-
tion might include contour points that are not the true LV boundary.
To compensate for such small errors, a 1 x 7 area along the radius
is scanned and the minimum is chosen as shown on the last term of
Eq.(1). In some cases, a contour correction may not always be de-
sirable since (i) errors in the previous contour will propagate and (ii)
erroneous image contours (on strong edges) might get selected.

Finally, the total energy is defined as:

Ly Liya

Etor = Z Z M, (s,k) - E(cy

s=1 k=1

(s), ce1(k)) -

3.2. DP Implementation

The following propagation equation is solved with DP as in [12]

Eiot(s,k) = min p) + E(ce(s), ce+1(k))}

{Etot(s — 1,
p=1...Ly 1

where Fioi(s — 1,p) denotes the minimum cumulative cost for

traversing at point M;(s — 1, p) in the matching unit. The compu-

tation starts at My (1, 1) and is repeated until the cumulative cost is

calculated for traversing at point Mt(Lt, Lt+1)- The minimum at

ct(L¢) is backtracked to derive the global solution.

4. EXPERIMENTAL RESULTS

Cardiac cine MR images were obtained from a healthy volunteer
using a Siemens Sonata (1.5T) scanner, and were breath-held and
ECG-gated. Following scout scans, a single short-axis slice of the
left ventricle (LV) were acquired in the cine mode with 2-D balanced
SSFP technique. Scan parameters: voxel size = 0.9 x 0.9 X 6 mm;
flip angle = 45%; TR/TE = 3.1/1.5 ms; 20 cardiac phases.

The algorithms were implemented in MATLAB. The DICOM
images (N = 20) were imported into MATLAB and the end sys-
tolic frame (frame 10) and a center point were selected as reference.
Starting from frame 10, the algorithms were executed once forward
and backward to obtain results on the complete cine stack. In Fig.1,
the epicardial and endocardial boundaries, and the corresponding six
myocardial segments, are shown for two frames: the end systolic
(frame 10) and the mid diastole. In Fig.2 the contours of frame 10
are shown in polar coordinates. Finally, in Fig.3, we show the epi-
cardial LV contour of the end systolic and end diastolic frame, and
the correspondence between the six segment points as propagated
throughout the complete stack (set) of cine images.

Notice how tightly and accurately the contours are detected, es-
pecially in the regions with various edge profiles, and the papillary
muscles are excluded successfully. The same consistency has been
observed with other sequences as well. Extensive synthetic experi-
ments and experiments on other sequences have been performed to
define normalization and weight factors factors; however, their pre-
sentation is beyond the space allotted in this article.

5. CONCLUSION

An automated method to detect the epicardial and endocardial con-
tours of the LV in short axis cardiac cine MR images in the polar
coordinate system was presented. In addition consecutive epicardial
contours are elastically matched to the contour of the end systolic
(reference) frame. A DP approach was chosen. In its present form,
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Fig. 1. Two frames in Cartesian coordinates with their corresponding
endocardia, epicardial, and six segment points marked.

100
Angle 0

Fig. 2. An MR image in systole transformed into polar coordinates.

the algorithm requires minimal parameter corrections among differ-
ent MRI sequences. In the future the algorithm will be compared
with hand labeled contours from imaging experts. Furthermore, the
majority of user initialization could be eliminated by employing an
LV detection algorithm as in [5]. Successful implementation of the
method would provide a systematic and robust method for evaluating
cardiac phase-resolved myocardial MRI signal changes.
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