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ABSTRACT

The compression of video can reduce the accuracy of post-compression

tracking algorithms. This is problematic for centralized applications
such as traffic surveillance systems, where remotely captured and
compressed video is transmitted to a central location for tracking.
We propose a low complexity optimization framework that automat-
ically identifies video features critical to tracking and concentrates
bitrate on these features via quantization tables. Using the H.264
video coding standard and two commonly used state-of-the-art
trackers we show that our algorithm allows for over 60% bitrate
savings while maintaining comparable tracking accuracy.

Index Terms— Urban traffic video tracking, video compres-
sion, optimal quantization

1. INTRODUCTION

Non-intrusive video imaging sensors are commonly used in traffic
monitoring and surveillance. For some applications it is necessary to
transmit the video data over communication links. However, due to
increased bitrate requirements this assumes either expensive wired
communication links or that the video data is being heavily com-
pressed to not exceed the allowed communications bandwidth. Cur-
rent video imaging solutions utilize older video compression stan-
dards and require dedicated wired communication lines. Recently
H.264 has started to be used in transportation applications, signif-
icantly reducing the link bandwidth requirement. However, most
video compression algorithms are not optimized for traffic video
data, nor do they take into account the possible data analysis that
will follow at the control center. As a result of compression the vi-
sual quality of the data will suffer, but more importantly the tracking
accuracy and efficiency are severely affected.

The field of video object tracking is quite active, with various so-
lutions offering strength/weakness combinations suitable for differ-
ent applications. For urban traffic video tracking most applications
involve a background subtraction component for target acquisition
such as one developed in [1], and an inter-frame object association
component such as the one developed in [2, 3].

Most tracking algorithm models account only for the native
statistics of video objects, and as a result distortion of these statis-
tics by noise sources, such as compression, severely degrade their
accuracy. In [4], special consideration is given to post-compression
tracking, and a novel method of spatio-temporally concentrating bi-
trate via a Region of Interest derived according to statistical behavior
is presented. The algorithm presented herein optimizes tracking ac-

curacy for a given bitrate by concentrating available bits in the
frequency domain on the features most important to tracking.

Given the special requirements of centrally controlled traffic
surveillance systems, it is necessary to limit resource requirements,
such as memory and processing power, for any technique seeking to
counter the effects of video distortion on tracking. The algorithm
presented herein is low in complexity and is readily deployable as
a simple modular add-on to low processing power remote nodes of
centralized traffic video systems. It makes no assumptions about the
operation of the video encoder (such as its motion estimation or rate
control methods) and is thus suitable for use in a variety of systems.
The resulting bitstreams are standard-compliant, thereby guarantee-
ing interoperability with other standard-compliant systems.

In Section 2 we discuss the effects of video compression on the
efficiency of tracking algorithms, focusing on the distortion of fea-
tures commonly used in real-time video object tracking. In Section 3
we propose our method of bitrate concentration on critical frequen-
cies to guide video compression, for which we show experimental
results in Section 4. We present concluding remarks in Section 5.

2. COMPRESSION DISTORTION OF TRACKING

While the active field of video object tracking contains a large va-
riety of algorithms, most of these systems share some fundamental
concepts. In reviews of object tracking presented in [S] and [6] it
is shown that most algorithms operate by modeling and segmenting
foreground and background objects. Once the segmentation is com-
plete and the targets located, the targets are tracked across time based
on key features such as spatial edges, color histograms and detected
motion boundaries. The segmentation models and key features for a
particular tracking application are chosen based on the application’s
goals and parameters. For example, color histograms can be useful
when tracking highway vehicle activity during the day, but can be
less useful under low light conditions at night.

Compression artifacts are especially debilitating for video
tracking applications. In a scenario where the video is distorted,
the performance of the tracking algorithm may suffer as the fore-
ground/background models become not as realistic and key tracking
features difficult to identify. In Fig. 1 a typical centrally controlled
tracking system is shown, where the video is captured at a remote
location and must be transmitted to a central location for processing.
Here the compressed video stream is decoded and post-processed
to remove as much distortion as possible, and then tracking is per-
formed. Such a separation of the capture and processing locations
of video is required in systems where many sources of video exist
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Fig. 1. Typical centrally controlled tracking system. Video of ob-
jects to be tracked is acquired (with capture noise Ncqp) at a remote
location, compressed (with encoding distortion Ney,), and transmit-
ted over a channel (with channel distortion N¢pq,). At the receiver
the transmission is decoded, post-processed and passed on to tracker.

(streets, intersections, strategic locations) yet the processing power
required to process the video on-site at each location would be
prohibitively costly. Therefore a central processing location where
all the video is sent is required. While the distortion N.qp from
the video acquisition process is inherent to any video system, the
distortion introduced by compression and lossy transmission (Nerc
and Ncpqn) are specific to such centrally controlled systems.

The introduction of measures to alleviate the effects of distor-
tion during encoding, transmission and post-processing is challeng-
ing given the different types of distortion, the parameters of which
may also vary across time. In the highway vehicle tracking exam-
ple, Ncap and Nep may vary based on lighting conditions, and if a
non-dedicated channel such as WiFi is used Ncpqr, Wwill vary based
on signal reception and network congestion. Therefore any mea-
sures meant to alleviate distortion effects need to either account for
all such variations in advance or be adaptive to each variation.

In order to optimize for tracking quality a metric to measure
tracking accuracy is required. In [7] a state-of-the-art review for
video surveillance performance metrics is presented. Due to their
pertinence in traffic surveillance for our work we choose the Over-
lap, Precision and Sensitivity metrics presented therein. Overlap
(OLAP) is defined in terms of the ratio of the intersection and union
of the Ground Truth (GT) and Algorithm Result (AR) objects,

GT; N AR;

OLAP = e AR,

)]
where GT; are the segmented objects tracked in uncompressed
video, the AR; those tracked in compressed video, N the intersec-
tion of the two regions and U their union. Precision (PREC) is
defined in terms of the average number of True Positives (TPs) and
False Positives (FPs) per frame as
TP
PREC = —————, 2)
TP+ FP
where TPs are objects present in both the GT and AR, while FPs are
objects present in the AR but not in the GT. An FP is flagged if an
object detected in the AR does not overlap and equivalent object in
the GT (OLAP(AR;, GT;) = 0). Sensitivity (SENS) is defined in
terms of TPs and False Negatives (FNs) as
TP
SENS = —————, 3)
TP+ FN

where FNs are objects present in the GT but not in the AR. An FN is
flagged if an object detected in the GT does not overlap and equiv-
alent object in the AR (OLAP(GT;, AR;) = 0). We define the
aggregate tracking accuracy A as

A = (axOLAP)+ (8x PREC)+ (y+xSENS), 4
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Fig. 2. Transform coefficients represented as per-coefficient basis
functions applied to the source 4x4 block. From left to right, top to
bottom, the coefficient indices are numbered 0,1,2..15.
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where «, 3 and «y are weighting factors. Given that OLAP, SENS,
PREC are all in the range [0 1], no normalization of A is necessary
aslongasa+ 3 +vy=1

3. PROPOSED METHOD

The proposed algorithm is an iterative gradient search. For each iter-
ation, the encoder quantization scheme of each individual frequency
is modified, and tracking accuracy is measured for a sample clip of
video. From these results, only the more favorable modifications
in the rate vs. A sense are kept, and subsequent iterations proceed
cumulatively. Details for the algorithm are presented below.

To limit the scope of our discussion we will consider only Ncqp
and Nepc, disregarding Ncpqrn. We assert that any given tracking
algorithm uses one or more features that play a greater role in its
success than other features. Each of these features is subject to Neqp
and Nen., possibly as governed by different functions based on the
nature of distortion — for example, a blurring N.q;, may impact edges
but not color histograms. We further assert that there exist undesir-
able features (such as those introduced by noise) that confuse track-
ing efforts and actively detract from tracking accuracy while still
consuming bits to be represented in the compressed video. All of
these features are each coherently represented in the frequency do-
main by one or more of the spatial transform filters used in hybrid
video coding, an example of which is shown in Fig. 2. The ba-
sis functions shown in the figure are those used for the 4x4 trans-
form in the H.264/AVC video coding standard — observe that each
coefficient’s corresponding basis sharpens vertical and/or horizontal
edges to varying degrees, with the exception of the 0-index “DC”
basis which sets the mean value. Also observe that by their nature
each basis will represent some feature more effectively than others,
while at the same time not representing other features at all — this
observation will be key to our optimization.

Our algorithm automatically identifies and concentrates com-
pression bitrate on frequencies useful to tracking, at the cost of bi-
trate allocated to frequencies confusing or useless to tracking. We
perform our optimization by manipulating the quantization of coded
transform coefficients. The quantization scheme is varied via the
Quantization Table (QT) specified as part of the Sequence and Pic-
ture Parameter Set structures in the H.264/AVC video compression
standard. Each entry of the QT is used to quantize a coefficient re-



sulting from the 4x4 spatial transform depicted in Fig. 2 — the goal
is to spend the fewest bits on those coefficients containing the least
useful information pertaining to the features used by the tracker.

The H.264/AVC standard specifies quantization for a given
transform coefficient index ¢;q4, in terms of the quantization point
(QP) and the QT as

QT = [to,t1,t2,...t15]
QPus = QP*(l% QT[idx]). )

Integers in the range [0-255] (8 bits) are allowed for each entry to
signify a multiplicative per-coefficient modification in the range [1%
16]. The probability space for our optimization is therefore of di-
mension 256° for a single quantizer. Given the large number of
costly evaluations that would have to be tried in an exhaustive ap-
proach we proceed using a gradient search. We will coarsen quanti-
zation of frequencies iteratively found to be less useful to tracking,
thereby saving more bits per accuracy reduced than if we simply
coarsened quantization uniformly across all frequencies.

The gradient search is performed by iteratively generating a set
of operating points (OPs), characterized by their bitrate R and ac-
curacy A, and selecting a subset of these considered superior in
performance. These “iteration optimal” OPs form the basis of the
subsequent iteration, whose OPs are generated by modifying the pa-
rameters of the previous iterations optimal OPs. The search is said
to converge when the set of iteration optimal OPs does not change
between two subsequent iterations. The ultimate goal is to generate a
rate-accuracy curve allowing the user to specify a bitrate and receive
a QT which will maximize tracking accuracy.

We define the uniform QT T = [255,255...255], which at-
tenuates all frequencies at the maximum allowed level. The itera-
tion optimal set S, is defined as the strictly increasing set of rate-
accuracy pairs which include the lowest bitrate in the set,

(Ar < Ap4n|Rr < Ri4n) YV, k
argmin{ Ry} V k, (6)

S opt -

Sopt [O] =

where k£ and k + n are indices into the set of available OPs. The QT
update function P is defined as

q){T,ZdiU,C} :T[to,tl,tz,.‘.tigfv,...t15]. (7)

To initialize our search we generate the OPs obtained by updat-
ing each entry in T}, and applying the result across a given range
of quantizers. Of these results we choose the iteration optimal subset
S0,0pt, Which forms the basis of the first iteration. For each subse-
quent iteration ¢, each point on S; 1 p¢ is revisited by updating en-
tries in their QTs, forming the set of OPs S; from which the optimal
set Si,opt is drawn. Refer to Fig. 3 for a sample iteration. The set of
OPs Sy (circles) are generated, and only the elements of Sy which
lie on the strictly increasing So,opt curve are revisited to form Si
(crosses). Thereafter only those members of S1 which lie on S opt
are revisited for S5 (triangles). The resulting set S contains OPs su-
perior to those on S1,0p¢, and therefore the algorithm will continue
to iterate a third time using an Sz ,p¢ to populate Ss.

Given that at each iteration only a single QT entry can be mod-
ified per OP, the theoretical worst-case convergence bound will in-
volve a maximum of 2—85 iterations. Each iteration ¢ can evaluate a
maximum of 16° OPs. While this worst case set already involves
close to 20 orders of magnitude fewer evaluations than the exhaus-
tive search, given the highly unlikely nature of the worst case it is
expected for our algorithm to converge with significantly fewer eval-
uations. Where a strict convergence time requirement shorter than
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Fig. 3. An example showing the first three iterations of the optimiza-
tion process in the rate-accuracy domain.

the worst case exists, the number of iterations allowed can be set to
a fixed ceiling for a faster resolution guarantee.

Note that the search must be performed simultaneously for a
range of base quantizers, as tracking is a nonlinear process subject
to different distortions at each quantization level. It is possible that
a finer quantizated OP may result in worse tracking performance
due to the introduction of noise elements which were effectively
filtered out with coarser quantization. Any non-iterative effort to
optimize quantization in this sense would require accurate models
of the video content and all sources of distortion, taking into ac-
count all variations across time. Our iterative process allows for
per-coefficient quantization optimization without such difficult and
error-prone modeling.

A core assumption of our algorithm is that the distortion process
of key tracking features is stationary for a given video source, at
least over sufficiently long periods of time where reinitialization of
the optimization to rebuild the optimal QT each time the distortion
process changes is feasible. Such change detection would need to be
provided externally, for example via light sensors to detect nightfall
or via frame histograms to detect inclement weather.

One limitation of our search method is that it is “greedy,” con-
sidering only single hop modifications to S;_1,,p+ When populating
S;. This limitation introduces sparsity in the set of OPs that can
be reached, making it possible for the converged Sop: to be sub-
optimal compared to an exhaustive solution. While this issue can
be readily circumvented by allowing for multi-hop projections when
populating S;, the additional computational burden to do so will be
unacceptably high for most low-cost embedded devices.

An implementational point to note is that the algorithm requires
access to the ground truth for operation. In a centrally controlled
system such as described in Fig. 1 this will not be available. How-
ever, a very close approximation can be obtained by compressing the
video sample at high bitrates and transmitting it at channel capacity
over a slower than real-time interval before starting the optimiza-
tion. If this is done such a process would have to run in series with
the optimization, thus adding to the initialization time requirement.

Note that while our algorithm involves online iterative search-
ing, a generic “tracking friendly” QT can generated by performing
the search over a variety of video content offline. Such a generic QT
would likely not be able to match the bitrate gain a QT tailored to
the specific scene could deliver. However, it would have the advan-
tage of not requiring a full-duplex channel between the remote and
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Fig. 4. Rate-accuracy results for the “I90” sequence and “Mean
Shift” tracking.

central locations to implement, and it would require no additional
startup time or additinal resources at the remote node to operate.

4. EXPERIMENTAL RESULTS

The video compression experiments presented herein have been per-
formed using the open-source H.264/AVC encoder x264 [8]. The
“I-90” and “Golf” sequences (720x480 @30Hz) were shot on DV
tape and are therefore high quality sources. 600 frames (20 seconds)
of each sequence were compressed using a common QP set of [25,
26, 27, 28, 29, 30] and uniform QTs 7; = 16 — j = [0, 1,...15].
The resulting video was used for tracking, and the results were put
through an “iteration optimal” criterion as described in Sec. 3 to
generate the “optimal” uniform quantization performance curve.
For our experiments, the post-processing block shown in Fig. 1
involves manually segmenting the road to help automated tracking —
segmentation is performed once and used for all cases where the con-
tent was utilized. The open-source OpenCV [9] “blobtrack” module
was used as the object tracker. In order to keep our work general we
defined equal accuracy components weights (i.e. o = 3 =y = %).
Refer to Fig. 4 for results from experiment using the “I-90”
sequence (lightly congested highway traffic) and the Mean Shift
tracker described in [2]. The algorithm was allowed to run for 4
iterations, evaluating a total of 587 OPs. Note that at the higher bi-
trates close to 40% bitrate savings for comparable accuracy tracking
is possible using our algorithm. Also note the gradual improve-
ment in performance among curves Sopt,1, Sopt,2 and Sopt,3, €ach
increasingly superior to the uniform quantized OPs of Sopt, fiqt-
Refer to Fig. 5 for results from experiment using the “Golf”
sequence (average congested local intersection) and the “Connected
Component” tracker described in [3]. The algorithm was allowed to
run for 3 iterations, evaluating a total of 447 OPs. The lower over-
all tracking accuracies compared to those if Fig. 4 are due to more
challenging tracking video being used. Note that at lower bitrates
savings exceeding 60% in bitrate can be realized with just 3 itera-
tions, and that as early as Sopt,2 the algorithm has almost converged.
Also note that here a completely different tracker than the one in Fig.
4 has been used on content of a different nature (hard to track traffic
intersection as opposed to easier to track highway content). Consis-
tent improvement across such different content and trackers clearly
demonstrates the adaptability of the algorithm.
The computation and memory requirements of the algorithm are
low enough for mobile and embedded platform implementations.
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Fig. 5. Rate-accuracy results for the “Golf” sequence and “Con-
nected Component” tracking.

Given that the gradient search can be done offline and needs to be
performed only once per system initialization or reset (due to a large
change in conditions), any system that can perform real time encod-
ing at remote nodes and tracking at the central node can reasonably
complete the optimization process in a matter of minutes.

5. CONCLUSION

We have proposed a novel method of optimizing object tracking
quality in compressed video through quantization tables. We have
demonstrated using two common object tracking algorithms that our
algorithm allows for over 60% bitrate savings while maintaining
comparable tracking quality.
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