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Abstract—Using DNA to store digital signals, or data in general,
offers significant advantages when compared to other media. The DNA
molecule, especially in its double stranded form, is very stable, compact,
and inexpensive. In the past, we have shown that DNA can be used to
store and retrieve digital signals encoded and stored in DNA. We have also
shown that DNA hybridization can be used as a similarity criterion for
retrieving digital signals encoded and stored in a DNA database. Retrieval
is achieved through hybridization of ‘query’ and ‘data’ DNA molecules.
In this paper, we present a mathematical framework to simulate single
query and parallel query scenarios and to estimate hybridization effi-
ciency. Our framework allows for exact numerical solutions as well as
closed form approximations under certain conditions. Similarly to the
digital domain, we define a DNA signal-to-noise ratio (SNR) measure to
assess the performance of the DNA-based retrieval scheme in terms of
database size and source statistics. With approximations, we show that
the SNR of any finite size DNA-based database is upper bounded by the
SNR of an infinitely large DNA-based database that has the same source
distribution. Computer simulations are presented to validate our results.

Index Terms—DNA, signal processing, DNA-based digital signal pro-
cessing, simulations, hybridization, modeling.

I. INTRODUCTION

ADLEMAN demonstrated the computational capacity of DNA,
by solving a specific combinatorial problem, the Hamiltonian

path problem, applying principles of DNA chemistry [1]. Baum [2]
claimed that it is possible to build a DNA database that encodes
digital instead of genetic information. He argued that this database
could have enormous storage capacity and can retrieve information
based on content, very similar to how the human brain works.

Using DNA to store digital signals or data in general offers
significant advantages when compared to other media. The DNA
molecule, in its double stranded form, is very stable, compact, and
inexpensive. Double stranded DNA, when preserved appropriately
can last many years [3]. (If suspended in aqueous environments, DNA
is susceptible to hydrolysis, the process of reacting with water.) A
database can be easily and economically replicated by Polymerase
Chain Reaction (PCR). Searching the database can be implemented
with a plethora of techniques. Given a query, DNA hybridization
provides an efficient way to search for similar molecules in the
database. In digital databases the search time typically increases
with the size of the database. However, in DNA databases when
hybridization is used as a search mechanism, the querying time does
not depend on the size of the database. This is because DNA kinetics
depend on relative concentrations and molecular diffusion but not
on the number of different molecules. Furthermore, parallel queries
can take place thus improving the throughput of searching (using
microarrays for example, a technology that is now commonly used
in genomic analysis).

Taking into consideration all of the aforementioned qualities, it
comes as no surprise that DNA has been considered a great candidate

Manuscript received July 3, 2008; Revised April 4, 2009.
The authors are with the Department of Electrical Engineering and Com-

puter Science, Northwestern University, Evanston, IL 60208 USA (e-mail:
stsaft,aggk@eecs.northwestern.edu.)

for storage of digital data [4]–[8], and even biological data [9].
Motivated by this fact, in our work we use DNA to store digital
signals and hybridization to search through the database [10]–[13].
Overall, DNA-based storage can be considered an organic based
approaches to digital signal processing [14].

Let us first consider the problem of searching in a digital database
of digital signals. Consider a set of M digital signals each of length
k and each entry of which is an r-bit integer. Consider also a vector
qd that contains kQ < k, r-bit integers. The problem at hand is
to find out whether qd can be found in the database. Traditionally
a matching criterion must be defined that measures the similarity
between the query and the digital signal [15]. Overall the retrieval
goal is to provide (a) a yes/no answer of whether a match has been
found and (b) the locations and the identities of the signals where
matches have occurred.

First step in building a DNA equivalent of a digital database, is to
encode digital signals into DNA sequences, which is also known as
the codeword design problem. The success of any DNA computation
depends largely on the codewords. In our problem, the encoding has
to be such that it enables content-based searches but limits retrieval
errors. Furthermore, the encoding scheme needs to account for the
presence of noise and allow for imperfect matches. To accomplish
this, we introduced the Noise Tolerance Constraint [10].

The second step is to decide on the structure of the database
elements. Each molecule is considered to be a database element;
the database consists of a collection of multiple copies of database
elements, which store the signal information. Usually each element
has a unique index block (or address), which uniquely identifies it
and/or enables the retrieval of a usually larger information (data)
carrying block. There are many different ways to design database
elements, each of which has unique properties and characteristics
(a comparison is presented in [11]). To construct a DNA database
blocks of digital information are converted into DNA sequences using
the digital to DNA encoding and the molecules are synthesized.

In place of experimental verification of the proposed DNA database
scheme we have developed a mathematical model that can simulate
hybridization reactions between query and target molecules [16]. We
implemented this framework and tested it on a small scale database
to show that hybridization efficiency is inversely proportional to the
mean squared error (MSE) of the encoded signal values [12], [13].

The main contributions of this article are: (a) the performance
study of very large size databases and (b) the extension of our
framework in modeling parallel query retrieval. Similarly to the
digital domain, we define a signal to noise ratio (SNR) metric to
quantify the performance of the DNA retrieval scheme in single and
parallel querying situations. Our framework allows for exact numer-
ical solutions as well as approximations under certain conditions.
With approximations, we show that the SNR of a DNA database is
upper bounded by the SNR of an infinitely large one with the same
source distribution. This shows that in terms of retrieval accuracy,
there is actual performance gain as the size of the database increases.
Furthermore, we show that the same bound holds for parallel query
retrieval when a certain laboratory protocol is followed.
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Fig. 1. Illustration of hybridizations between query and database elements.
The variable i indicates location.

This paper is organized as follows. In Section II we sketch the
characteristics of the equivalent DNA database system that can store
digital signals. The framework for modeling of single and parallel
query searches, under equilibrium assumptions, in DNA databases
and performance evaluation using an SNR metric are presented in
Sections III, and IV, respectively. Our study on the SNR of an
infinitely large database is presented in Section V. Simulation results
are given in Section VI. Finally in Section VII conclusions are given
along with possible future extensions and applications.

II. SYSTEM DESCRIPTION

A number of constraints have been proposed in order to satisfy a
specific input problem but also limit errors that arise either naturally,
or technically [17]–[20]. In our case the problem translates into
finding N DNA sequences or words wi, i = 0, . . . , N−1, (= 2r−1),
from the quaternary alphabet A, T,G, and C, each l bases long,
capable of encoding integer signal values i = 0, . . . , N −1. In short,
this is a look up table that matches signal values, i, to the fixed length
sequences wi.

For the problem of encoding signals careful consideration is
necessary to account for the noise in the signals. Digital signals
are encoded satisfying the Noise Tolerance Constraint [10], that is
codewords corresponding to integers numerically close to each other
are similar (they have similar thermodynamic characteristics), while
integer values far apart have codewords rather dissimilar. More details
on the codeword design and a set of words capable of encoding 5-bit
signals are given in the Appendix. We should note that most aspects
of the following analysis hold for all hybridization based retrieval
schemes and are independent of the codeword design methodology.

We assume that DNA sequences inside a database are constructed
as shown in Fig. 1, following Baum’s model [2]. Readers are referred
to [11] for a discussion and comparison of other possible designs. For
each database element S, with concentration C, the double-lined
gray part is the index that identifies the data, which are shown as
solid black lines. Data are concatenations of DNA words wi, i =
0, . . . , N − 1. The index part of different elements should be very
dissimilar. Assume that we have M digital signals and hence M
database elements of length (L + IN) bases, where IN,L is the
index and data length, respectively.

The system is described with the following parameters and inputs:
1) M database elements S, each of concentration C and se-

quence information s each of length L,  = 1, . . . ,M .
2) A query Q, shown in Fig. 1 as a solid gray line, of concentration
|Q|o and sequence information sQ of length lq .

3) Reaction parameters: temperature T and salt concentration∣∣Na++
∣∣.

To retrieve information from the database query molecules are
synthesized. Queries are signal segments of interest. The query signal

is encoded using the same look-up table, but the complementary
sequence is synthesized and introduced in the solution. The query
molecules will hybridize to complementary molecules in the database
as seen in Fig. 1. There is a plethora of laboratory techniques to assist
in the hybridization and filtering process (eg., affinity purification,
FACS) and some even allow for parallel query searches. However the
focus of this article is to quantify the percentage of correct retrievals
that is the percentage of query molecules that hybridize to desired
targets versus erroneous ones.

Hybridization between molecules is a random process and the
probability of two molecules hybridizing is a function of concen-
trations, thermodynamic strength of their chemical bond, T and∣∣Na++

∣∣ [21]. Therefore, it is critical to quantify the percentage of
desired hybridizations over the complete ensemble of hybridizations.
Consequently, a SNR metric can be defined, where signal is con-
sidered to be the concentration of events corresponding to desired
hybridizations and noise the concentration of undesired ones.

III. MODELING HYBRIDIZATION REACTIONS

In this section we present a framework for simulating query
searches in DNA databases. We first explore single query searches
and offer metrics of their performance, such as error estimates and
scalability with respect to different query and database concentra-
tions, source statistics, and number of database elements. We then
extend our analysis by simulating multi-query environments where
parallel queries take place. We use a 2nd order thermodynamic
equilibrium model that provides a tractable computational solution,
which can be further simplified via linearization to provide a closed
form solution. Despite the model’s simplicity, it provides a best case
upper bound for the performance of the database.

To aid in our presentation we introduce the notion of fragments
as in [22]. A fragment F i,p represents the sequence information of
a database element  at location i of length p with concentration∣∣F i,p∣∣. It is clear that F i,p ⊆ s. Furthermore, it is apparent that in
our case the initial concentration of each fragment is equal to the
concentration of each database element, that is

∣∣F i,p∣∣o = C.
Subsequently we denote the query fragment complexes as QF i,p.

Such complexes are illustrated in Fig. 1 at various locations. The com-
plexes can have rather elaborate geometric structures (also referred
to as secondary structures) and a number of modeling approaches
have been considered [21], [23]–[28]. We will also assume that only
linear query-fragment complexes of length p = lq are formed, and
we will thus drop p from our notation. This assumption implies
that complexes will only have internal mismatches, no loops, and no
dangling ends. Furthermore, we assume that the index and the query
will not cross-hybridize, due to the way the index was designed.

Data are concatenations of codewords wi, i = 0, . . . , N − 1
of length l, and queries are concatenations of complements of
codewords. In contrast to the analysis presented in [16] we assume
that the query is a single codeword Q = wCi and that only perfectly
aligned complexes are formed; therefore each fragment is a word
F i = wj . This will allow us to relate hybridization efficiency and
performance with database size, a relationship that could not be
analytically derived without the above assumptions.

Under these assumptions query fragment complexes QF i are
actually codeword pairs wCi wj . Since we have M database elements
of concentration C and each database element is L bases long, the
total number of complexes NT is equal to NT = M L

l
= M · k.

However, there exist only N2 distinct complexes (N molecules
and N Watson Crick complements), and if NT < N2 multiple
occurrences of the complexes occur. Hence for a given wCi , we have
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N hybridization reactions of the form,

wCi + wj
Kf

GGGGGGGBFGGGGGGG

Kr

wCi wj , ∀j ∈ [0, N − 1]. (1)

The parameters Kf and Kr are called respectively the forward and
reverse rate constants, and they depend on environmental parameters
and laboratory settings. They are usually difficult to estimate since
they require a plethora of laboratory experiments and they are not
universal. Therefore, usually an equilibrium analysis that does not
model the dynamic behavior is sought after.

A. Model Validity

The assumptions made in the section above that resulted in (1) are
realistic, since our codewords were designed to limit the formation of
secondary structures and the index words are designed to be highly
dissimilar with the codewords [10], [29]. However, it is true that due
to the stochastic nature of hybridization reactions such errors will
happen with small probability. Accounting for those events and for all
possible secondary structures is an exhausting exercise and requires
numerous computing cycles. For example the formulation in [30]
provides an elegant and computationally efficient algorithm with
O(N4) complexity, where N is the number of complexes considered.
However, the algorithm assumes equimolar concentrations of all the
strands involved.

In our analysis we want to include the initial concentration of
the species as a system parameter. We risk however, the validity of
our thermodynamic models since the 2nd order equilibrium reaction
model assumed is not entirely accurate when one of the species is in
excess (such as when the database reaches infinity) [23], [31]. In our
case however, the species that are in excess are the database elements
and not the query. We are interested in the complexes where the query
is involved and not in the unimolecular secondary structures that the
database elements might form. We have examined concatenations of
our codewords, and we have verified via the algorithm in [30] that
they do not form competing secondary structures against the desired
query and database element complexes when the query is diluted.
(The detailed presentation of the verification goes beyond the scope
of this article.) As we will show in more detail below, when the query
is diluted the competition for the query molecules is large, and as
long the query molecule does not form any secondary structures that
inhibit query fragment complexes, our analysis is still valid.

To this effect, our numerical analysis provides an upper bound
of performance via the solution of linear equations that allows the
user to reach a fast conclusion about the quality of the design.
In the Virtual Test Tubes of [32], [33] hybridization affinity is
approximated with a modified Hamming distance metric, namely the
H-measure. It was shown that even this simplified representation
provides simulation results that are close to experimental reality.
In [34] statistical thermodynamics are used to study the interaction of
hybridizing nucleic acids and reach similar conclusions as the ones
presented here.

A multiplex qPCR assay, used in measuring gene expression,
can be considered as a parallel query retrieval in a DNA database
(the target genomic material). Despite the careful design of primers
(probes), most of the assumptions above are violated. There will be
secondary structure in the targets or target to target hybridization that
might inhibit probe-target hybridization. In this case, it is necessary
to include all possible secondary structures and go beyond the two
state model (eq. 1) and consider the competition of all these states
and molecules in a multiplex-multi-state model [35]. A multiplex
approach has been followed by Horne and colleagues [35] and it of-
fered valuable conclusions to the effect of competition between cross-
hybridized products and secondary structures on desired hybridization

based both on kinetic and equilibrium analysis. They also compared
with other methods, multiplex or multi-state, in the literature. We
should highlight that when the authors made similar assumptions to
ours, the reaction equations and equilibrium analysis are the same;
however, we offer a different computational solution and we even
provide an approximate closed form solution.

B. Estimating the concentration of query fragment complexes

The objective of this section is to estimate the concentration of
complexes wCi wj , denoted by

∣∣wCi wj∣∣, in equilibrium by assuming
that all database elements have equal concentration, that is C = C.
We will proceed to find |wCi wj | following similar steps as in [16].
Under an equilibrium assumption, the differential equations that
describe the mass action equations that satisfy (1) become polynomial
equations. Therefore the equilibrium constant Kij , can be defined as

Kij = |wCi wj | · (|wCi ||wj |)−1 = e−
∆Gij
R·T , (2)

where |wCi | and |wj | are the concentrations of the unhybridized
(free) wCi and wj respectively, ∆Gij is the Gibbs free energy of the
complex wCi wj , R the Boltzman constant, and T the temperature in
Kelvin. The Gibbs free energy for DNA complexes is a function of
their sequence content and can be estimated using nearest neighbor
(NN) thermodynamics parameters, which are available in the litera-
ture [21], [24], [36]. We should highlight that these constants depend
on the reaction temperature and salt concentration; hence they have
to be readjusted for each experiment. Also, the NN model assumes a
two state (all or none) model of hybridization and has been developed
for a single kind of duplex in solution. Although more complex and
accurate models exist (multi-state models or next-to-NN models) [31],
[37], when the probes are small in length and secondary intermediate
structures are not expected, the two state model is a valid starting
point [21]. Both conditions hold in our case since the probes are
relatively small in length and secondary structures are not anticipated
due to the careful design of the individual codewords that comprise
the database elements and the query.

Let us assume a source encoded using N integers j = 0, . . . , N −
1, with known probabilities P (j). Since an integer j is encoded
into a codeword wj , its probability is P (wj) = P (j). Furthermore,
knowing that there are NT = M · k occurrences of codewords in M
database elements, the initial concentration |wj |o is given by

|wj |o = P (wj) ·M · k · C. (3)

The mass conservation equations for the query and codeword are:∣∣∣wCi ∣∣∣
o

=
∣∣∣wCi ∣∣∣+

N−1∑
j=0

∣∣∣wCi wj∣∣∣ =
∣∣∣wCi ∣∣∣+

N−1∑
j=0

Kij

∣∣∣wCi ∣∣∣ · |wj | ,
(4)

|wj | =
|wj |o

1 +Kij |wCi |
. (5)

The above system can be solved by substituting (5) into (4), to obtain∣∣∣wCi ∣∣∣
o

=
∣∣∣wCi ∣∣∣+

N−1∑
j=0

Kij

∣∣∣wCi ∣∣∣ · |wj |o
1 +Kij |wCi |

. (6)

Following the steps in [16], [38], it can be shown that due to its
monotonicity (6) has (i) a unique solution, denoted as

∣∣wCi ∣∣B , that
can be found using the bi-section method and (ii) has the following
approximate solution that can be found under the assumption that
the query concentration is smaller than the concentration of database
elements (ρ = |wCi |o/C < 1)∣∣∣wCi ∣∣∣ ≈ ∣∣wCi ∣∣o

M · k · C · K̂
, (7)
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where
N∑
j=1

Kij · P (wj) = K̂.

Using now (2) and (5) the concentration of each complex is∣∣∣wCi wj∣∣∣ = Kij ·
∣∣∣wCi ∣∣∣ · |wj | = |wj |o ·Kij ·

∣∣wCi ∣∣
1 +Kij |wCi |

. (8)

Finally, by substituting
∣∣wCi ∣∣ from (7) we obtain∣∣∣wCi wj∣∣∣ =
M · k · C · P (wj) ·Kij ·

∣∣wCi ∣∣o
M · k · C · K̂ +Kij |wCi |o

. (9)

C. Query Selectivity

Query selectivity SAij for a complex wCi wj can be defined as the
percentage of its concentration within all the hybridized complexes,

SAij =

∣∣wCi wj∣∣
N−1∑
r=0

|wCi wr|
=

∣∣wCi wj∣∣
|wCi |o − |wCi |

, (10)

where use of (4) was made in obtaining the second equality. Query
selectivity is a dimensionless quantity that can be seen as the
probability of the complex wCi wj occurring in an ensemble of other
complexes. Substituting (7) in the above equation we have

SAij =

∣∣wCi wj∣∣
|wCi |o −

|wCi |o
M·k·C·K̂

. (11)

It is very common in the analysis of concentrations of molecular
systems to evaluate ratios of concentrations or ratios of selectivities.
This is very useful, for example, when examining the ratio of a
desired hybridization (event) to an undesired one. In our case the
selectivity ratios can be defined as:

SAij
SAij′

=

∣∣wCi wj∣∣
|wCi wj′ |

=
Kij

Kij′
·
|wj |o
|wj′ |o

·
1 +Kij′ ·

∣∣wCi ∣∣
1 +Kij · |wCi |

(12)

Utilizing the approximate solution of (7) and (3) we get∣∣wCi wj∣∣
|wCi wj′ |

=
Kij

Kij′
· P (wj)

P (wj′)
·
M · k · C

|wCi |o
· K̂ +Kij′

M · k · C

|wCi |o
· K̂ +Kij

. (13)

Equation (13) illustrates that at dilute concentrations the ratio of
concentrations of two complexes is analogous to the ratio of their
equilibrium constants (which is expected), but it is also analogous
to a second term that highlights the dependency on the ensemble
of fragments. A hint about this dependency is given in [18] when
experimental findings are discussed. In [16] we derived the depen-
dency term, which is a more generic version of (13). In [34] a
similar result is presented following a quadratic approximation. Also
in [39] a same conclusion is reached on the effect of concentration
of undesired hybrids, following a kinetic analysis and considering
simplified scenarios (eg., two probes attached on surface and two
targets).

D. Signal-To-Noise Ratio

Similarly to [34] we can define the Signal-to-Noise Ratio (SNR)
of a search with query wCi as:

SNR(wCi ) =

∑
j∈D

∣∣wCi wj∣∣∑
j 6∈D
|wCi wj |

, (14)

where D denotes the set of desired reactions. In our case desired
hybridizations wCi wj are those for which the MSE of their corre-
sponding signal values is less than or equal to the parameter TP , while

un-desired hybridizations are all the rest. However, since we only
have codeword pair interactions and they satisfy NTC (see Section II
and Appendix), desired and un-desired hybridizations can be specified
and quantified. According to the NTC, desired complexes are those
for which |i − j| ≤ TP , while un-desired are those for which
|i− j| > TP . Hence, (14) becomes

SNR(wCi ) =

i+TP∑
j=i−TP

|wCi wj |
i−TP−1∑
j=0

|wCi wj |+
N−1∑

j=i+TP+1
|wCi wj |

=

1+
i−1∑

j=i−TP

|wCi wj |
|wCi wi|

+
i+TP∑
j=i+1

|wCi wj |
|wCi wi|

i−TP−1∑
j=0

|wCi wj |
|wCi wi|

+
N−1∑

j=i+TP+1

|wCi wj |
|wCi wi|

, (15)

where the righthand part was derived by dividing the nominator and
denominator by

∣∣wCi wi∣∣. The value of SNR(wCi ) can be calculated
by substituting (12) into the above equation.

IV. PARALLEL QUERY RETRIEVAL

We consider now the case when NQ queries Q1, Q2, ..., QNQ
are utilized in retrieving information from the database. We have
to consider the answer to two types of questions: (I) do any of
the queries Qı hybridize to desired targets in the database? or (II)
which of the queries Qı hybridize successfully in the database?
Case (I) can be easily implemented in parallel without altering the
retrieval protocol, by labeling each query with the same fluorescent
dye. Case (II), however, can either be implemented in parallel or in
series. Parallel implementation involves the fluorescent labeling with
NQ different dyes or with DNA microarrays where the location of
each spot identifies the query. (DNA microarrays are small, solid
supports onto which thousands of DNA sequences (probes) are
immobilized at fixed locations forming an arrangement of spots.)
Serial implementation involves iterative repetitions of single query
searches that we described in the previous sections.

In this section we examine the parallel implementation of Cases
I and II. Their analysis is identical up to the point of perfor-
mance evaluation. We will follow the approach of Section III,
for estimating |QıF i | with the following two differences: (i) we
now have NQ queries, Q1, Q2, ..., QNQ , with initial concentrations
|Q1|o , |Q2|o , ...,

∣∣QNQ ∣∣o, respectively; (ii) the restriction that the
query is perfectly aligned with the words in a database element is
removed, thus making the analysis more general. In this case we can
write the following reactions for each Qı, ı = 1, ..., NQ:

Q1 + F i
Kf

GGGGGGGBFGGGGGGG

Kr

Q1F

i , ∀i, 

...

Qı + F i
Kf

GGGGGGGBFGGGGGGG

Kr

QıF

i , ∀i,  (16)

...

QNQ + F i
Kf

GGGGGGGBFGGGGGGG

Kr

QNQF

i , ∀i, 

As before, for each reaction there is an equilibrium constant. We
will augment our notation here to accommodate the query index ı.
Therefore K

i,ı is the equilibrium constant of the complex QıF i and
is related to the corresponding Gibbs free energy ∆Gi,ı by:

K
i,ı =

|QıF i |
|Qı| · |F i |

= e−
∆G

i,ı
R·T . (17)
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Using this equation, the conservation equation for each query is

|Qı|o = |Qı|+ |Qı|
∑

i,
K
i,ı |F


i |, ∀ı, (18)

where again the sum is over NT terms, which is the number of
complexes in the system. Subsequently, we can define αı as

αı =
|Qı|o − |Qı|
|Qı|o

=

∑
i, |QıF


i |

|Qı|+
∑
i, |QıF


i |

=

∑
i,K


i,ı |F


i |

1 +
∑
i,K


i,ı |F


i |
, (19)

where we used (18) in the last part. If we rewrite αı as αı = 1− qı,
where qı = |Qı|

|Qı|o
, then (19) becomes

qı =
1

1 +
∑
i,K


i,ı |F


i |
. (20)

Utilizing the conservation equations for each species we have

|F i |+
NQ∑
ı′=1

K
i,ı′ |Qı′ | |F


i | = |F


i |o ∀i, . (21)

By substituting (19) into (21) and solving for |F i | we obtain

|F i | =
|F i |o

1 +
NQ∑
ı′=1

K
i,ı′ |Qı′ |o (qı′)

(22)

The NT ×NQ system of (20) and (22) can be solved iteratively for
qı and |F i |, by assuming an initial value for each qı and alternating
the use of the two equations. This procedure finds a single solution
for qı and |F i | regardless of the initial guess of qı. With known qı
and |F i | now the sought after |QıF i | can be found using the fact that
qı = |Qı|

|Qı|o
and (17). We should note that by using the normalized

query concentration, qı, we avoid numerical errors that might have
occurred if we were to solve for Qı directly [35].

Applying the assumptions of Section III, equations (20) and (22)
assume a simpler form. In this case F i = w, K

i,ı′ = Kı, with
initial concentration as in (3), and Qı ∈ [wC1 , ..., w

C
N ] with initial

concentration |wCi |o. (Clearly for single word queries NQ ≤ N .)
Equations (20) and (22) can be rewritten as

qı =
1

1 +
N∑
=1

Kı · |w|
, (23)

|w| =
|w|o

1 +
NQ∑
ı′=1

Kı′ |wCı |o (qı)

. (24)

A. Retrieval Efficiency of Parallel Querying Scenarios

The retrieval error of the whole system can be used to study its
performance. For each case, two definitions can be given depending
on the laboratory protocol used to track and retrieve each query.

For Case I the overall error can be defined as the ratio of
undesirable events (noise) over all events (signal+noise); that is,

EI =

NQ∑
ı=1

∑
i,6∈D
|QıF i |

NQ∑
ı=1

∑
i,

|QıF i |
(25)

Note that the error of each individual query for Case I cannot be
specified, since the fluorescent response of each query can not be
distinguished. There are two sources of undesirable events for a
query Qı: (a) the fluorescent response from un-desired hybridizations

between Qı and the database, and (b) the fluorescent response from
all hybridizations between queries Qı′ , ı′ 6= ı and the database.
Then the numerator of εı is the sum of the two noise sources that is∑
i,6∈D
|QıF i | +

∑
i,,ı′ 6=ı

|Qı′F i | while the denominator is the same as

in (25). However, we can see that
NQ∑
ı=1

εı 6= EI , which would have

been expected from such a system.
For Case II the overall error is:

EII =

NQ∏
ı′=1

εı′ , (26)

where εı′ =
∑
i,6∈D

|Qı′F i | /
∑
i,

|Qı′F i |, is the error of each query.

With single word queries and only word-to-word interactions then

εı′ = (1 + SNR(wı′))
−1, (27)

where SNR(wı′) is given by (14).
We can define the SNR of the system as:

SNR = 1/E − 1, (28)

where E is either EI or EII . For Case II the SNR for each
individual query can also be defined by

SNRı = 1/εı − 1. (29)

B. Estimating Source Statistics of a DNA Database

In this section we are considering the problem of estimating the
source statistics of a DNA database. Although we synthesized the
database from digital data and hence the initial source distribution
was known, this distribution might have been altered due to various
factors, such as synthesis and replication errors, dilution procedures,
and ligation errors [11]. There exist common laboratory protocols
(DNA microarrays) that can be used to estimate these statistics, or
equivalently estimate the relative concentration of each word in the
database. Alternatively, quantitative real time PCR (qPCR) can be
used [40]. qPCR relies on probe target hybridizations that take place
in solution and does not suffer from the complications of surface
interfaces and other limitations that DNA microarrays introduce [41].
However, qPCR can be time consuming due to its serial fashion, since
each probe has to be tested separately. Recently, parallel quantitative
PCR has been developed to improve the throughput of qPCR [42] and
therefore can be considered as an excellent candidate for our problem.
We will present our analysis based on a microarray; however, we will
use a more simplified hybridization model that does not account for
the surface’s effect on molecular kinetics, thus making our model
directly applicable to a qPCR scenario.

Let us assume a DNA database formed by concatenating words
wj . Our goal is to find |wj |o. We assume that the database elements
have a structure that allows PCR replication. Database elements
are encapsulated by two known sequences (called primers) that are
common to all elements, see [11] for more details. A sample of the
database is taken and a PCR step with the two primers incorporates
fluorescently labeled nucleotides. This procedure generates database
elements that are fluorescently labeled and can be tracked.

Further, let us assume the existence of a small microarray with each
spot containing as probes, all N Watson Crick complement words
wCı , each with equal concentration C. To improve the accuracy, probe
repetition among different spots on the array can also be used, but
does not affect our analysis below. In a trivial microarray experiment
a sample of the fluorescently labeled database is deposited on the
microarray. Probes on the spots and words in the database react. The
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final outcome is a microarray image with intensity Iı at each spot.
The following relation holds for Iı and |wCı |:

Iı = f

(∣∣wCı ∣∣bound

|wCı |o

)
+ βı, (30)

where f() is a function relating concentration and intensity, and βı
is the noise associated with the scanning apparatus [43]. Note that
modeling hybridization reactions in solid-solution phase systems, as
in microarrays, is a topic of great interest, see for example [44]–[46].
In [44] it has been shown that when equilibrium is reached, the model
can be reduced to Iı ∝

∣∣wCı ∣∣bound
/
∣∣wCı ∣∣o if the instrument noise is

ignored. The previous model is also used in [47] to estimate total
concentrations in equilibrium. However, other parameters, such as
the presence of the microarray surface, may affect the rate at which
equilibrium is achieved [44] but we will ignore these parameters since
we are not interested in the speed of the process we can assume
that adequate incubation time has been allowed to reach equilibrium.
Alternatively, qPCR which is a faster and solution phase only assay,
can be used in lieu of microarrays or in tandem.

The above experiment can be formulated as a parallel multi-query
search as described previously in Section IV. In this case Qı ≡ wCı
and NQ = N . Therefore,∣∣∣wCı ∣∣∣

o
=
∣∣∣wCı ∣∣∣+

∣∣∣wCı ∣∣∣N−1∑
j=0

Kı,j |wj |, ∀ı. (31)

From (19) we obtain

αı =

∣∣wCı ∣∣o − ∣∣wCı ∣∣
|wCı |o

=

∣∣wCı ∣∣bound

|wCı |o
. (32)

From the above we see that aı = Ii, then using (32) (31) becomes

Iı
1− Iı

=

N−1∑
j=0

Kı,j |wj | ∀ı. (33)

The above linear system of equations can be solved for |wj |

W = K−1 · IQ, (34)

where W = [|w1| , . . . , |wN |]T , IQ = [ I1
1−I1

, . . . , IN
1−IN

]T , and K is
an N ×N matrix of all equilibrium constants.

With the estimated |wj |, |wj |o can be found from (24) as

|w|o = |w| ·

1 +

NQ∑
ı′=1

Kı′

∣∣∣wCı ∣∣∣
o

(1− αı)

 . (35)

V. RETRIEVAL EFFICIENCY OF AN INFINITELY LARGE DATABASE

In this section we will derive expressions for the SNR and the
retrieval error of the system as the number of database elements
reaches infinity. We will prove that a system that allows for a noise
tolerant retrieval (as in NTC) has a lower retrieval error than other
(traditional) systems without noise tolerance. A condensed form of
the analysis analysis of this section also appeared in [38].

The study of retrieval error (efficiency, accuracy) is of critical
importance in designing memory systems. In [5] it was shown that
the information capacity increases exponentially with the size of the
index; however, it was claimed that the protocol has low retrieval
error due to the use of nested PCR (another form of PCR). In [48] a
formula to describe the channel capacity of molecular machines was
presented. The analysis is based on the Brownian motion of molecules
and the maximum possible information gain. This gain is a function
of the energy that a molecular machine dissipates into the surrounding
medium, the thermal noise energy which disturbs the machine, and
the number of independently moving parts involved in the operation.

Simulations were used in [49] to quantify retrieval efficiency and
similar conclusions as the ones derived mathematically in this section
were drawn. Our analysis also reaches similar conclusions as in [27],
[34] but from another point of view.

As in Section III we will assume that only perfect aligned com-
plexes are present. When more database elements are introduced into
the database (M → ∞) the number of codewords increases and
therefore their concentration increases, that is lim

M→∞
|wj |o → ∞,

while the concentration of the queries is bounded (query in dilute).
From (13) after some basic steps we obtain

lim
M→∞

∣∣wCi wj∣∣
|wCi wi|

=
∞
∞ = . . . =

Kij

Kii
· P (wj)

P (wi)
. (36)

From (15) and using the previous equation we obtain

lim
M→∞

SNR(wCi ) = SNR(wCi )∞ =

=

1 +
i−1∑

j=i−TP

(
Kij
Kii
· P (wj)

P (wi)

)
+

i+TP∑
j=i+1

(
Kij
Kii
· P (wj)

P (wi)

)
i−TP−1∑
j=0

(
Kij
Kii
· P (wj)

P (wi)

)
+

N−1∑
j=i+TP+1

(
Kij
Kii
· P (wj)

P (wi)

)

=

i+TP∑
j=i−TP

(Kij · P (wj))

i−TP−1∑
j=0

(Kij · P (wj)) +
N−1∑

j=i+TP+1

(Kij · P (wj))

. (37)

Note that according to the NTC in addition to wi, codewords
neighboring wi are retrieved, and hence the codewords are designed
such that Kij

Kii
< 1, for |i − j| ≤ TP (numerator of (37)). On the

other hand for codewords outside this neighborhood (denominator of
(37)) Kij

Kii
� 1, for |i− j| > TP .

We can calculate the corresponding retrieval error as

E∞(wCi ) = lim
M→∞

E(wCi ) =
1

1 + SNR(wCi )∞
. (38)

If we assume a uniform distribution for P (wj) we obtain

lim
M→∞

SNR(wCi ) =

i+TP∑
j=i−TP

Kij

i−TP−1∑
j=0

Kij +
N−1∑

j=i+TP+1

Kij

. (39)

Then the corresponding retrieval error is in agreement with the
definition of computational incoherence in [27], [34] (the probability
of error); However, the approach in [27], [34] is rather qualitative than
quantitative. In this section we showed (using a linear approximation),
that at infinity the retrieval error is only a function of the source
statistics P (wj) and the equilibrium constants Kij .

We can further compare the performance of the proposed retrieval
and codeword design system with codeword designs that allow only
exact matching (perfect hybridization). Assume that we have such a
codeword set K′ij , we can find the SNR of a search w′i at infinity
by replacing Kij with K′ij , and setting TP = 0 in (39), that is,

lim
M→∞

SNR(w′Ci ) =
K′ii

i−1∑
j=0

K′ij +
N−1∑
j=i+1

K′ij

. (40)

By comparing (40) and (39) we see that for the SNR expression in
(40) to be larger than or equal to the expression in (39) either

K′ii ≥
i+TP∑
j=i−TP

Kij (41)
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or
i−1∑
j=0

K′ij +

N−1∑
j=i+1

K′ij ≤
i−TP−1∑
j=0

Kij +

N−1∑
j=i+TP+1

Kij . (42)

We have shown that controlled cross-hybridization is actually
beneficial in terms of SNR when designing such systems, since
(41) or (42) need to be satisfied by a system allowing only perfect
hybridization. The same conclusion was reached in [50] when the
performance of microarray systems was evaluated using a communi-
cation model.

VI. COMPUTER SIMULATION OF DNA DATABASES

In this section we present the results obtained when the models and
derivations of the previous section are implemented in a computing
language to simulate data retrieval in a test DNA database. The
simulation language used was MATLAB. We used the codeword set
shown in Appendix to encode N = 32 signal values. We present
our results on the relationship between annealing selectivities and
source statistics. Finally, we show our numerical findings on the per-
formance of infinitely large databases. For all experiments the initial
concentration of each database element was C = 10−5mol/Liter.

A. Results on Annealing Selectivities and Source Statistics

We model each word’s wj probability as P (wj) = P (j) + εj ,
where P (j) is the probability of the index j and εj is a random
variable that follows a uniform distribution with mean E[εj ] = 0
and standard deviation σε. This scenario will simulate cases when
the source statistics are different from the ones initially assumed. In
fact, it will be shown that the effect on the resulting SNR is less
than an order of magnitude.

Our experimental setup was a database with M = 20 database
elements and k = 20 words per database element. The reaction
temperature was T = 60oC. We found the Gibbs free energy of all
possible pairs (322) and their corresponding equilibrium constants
using the methodology of Section III and (2). We performed our
simulations for ρ equal to 100, 10, 1, 0.1, and 0.01. We also assumed
a uniform distribution for the source, that is P (j) = 1/32. We tested
for two different standard deviations σε = {1.86 ·10−3, 4.65 ·10−3}
which correspond to the two ranges for εj , [−0.2

32
, 0.2

32
] and [−0.5

32
, 0.5

32
].

For each ρ we generated 50 sets of random variables εj with the above
standard deviations. Afterwards, we found the SNR of a query search
with qd = {15} against the database for a given ρ and σε. In Fig. 2
we show a box-whisker plot for each σε for various ρ. (Different box
size indicates the case of σε.) With the marker ‘×’ we denote the
SNR of a database where P (wj) = P (j), for comparison. We see
that the median for each case (illustrated by a line inside the box)
is close to the actual SNR marked with ‘×’. In fact the effect of
deviation from uniformity on the SNR is minimal.

In a similar fashion, we wanted to test the effect of different source
distributions on the performance of query retrieval. We assume again
that we are querying with qd = {15} and that ρ = 10. Now we
assume that the source follows a Gaussian distribution with mean
m = j, where j is a word index, and variance σ2. In the following
experiment we compared all indices [0, . . . , 31] vs. σ2 = [3, 4, 5],
for TP = 3. In Fig. 3 we plot in logarithmic scale the corresponding
SNR values. For example we see that when m = 4, σ2 = 3
the SNR is close to 100, despite the fact that the Gaussian is
biased towards codeword 4. We would expect the SNR values to
be maximized for m = 15 which corresponds to our query qd.
However, although it is not clear from the graph, the maximum SNR
is achieved for m = 14. After examining the formula of the SNR
for the two cases m = 14 and m = 15, we found that although the

Fig. 2. SNR values for a database with uniformly varying source statistics
with standard deviation σε = 1.86 · 10−3 and σε = 4.65 · 10−3 shown in
the large and small box-whisker respectively. (‘×’ denotes the SNR of a
database with P (wj) = P (j))

Fig. 3. SNR values for a database with Gaussian varying source statistics
with means centered at each codeword index and variance TP , TP+1, TP+2.

numerators are the same, the denominator for m = 15 is larger than
the one for m = 14 and hence the smaller SNR for m = 15. This is
attributed to the codeword design set and highlights the importance of
using such simulations and models when evaluating codeword sets.

From our simulation experiments we conclude that in order to
have a retrieval system that is not biased by the source statistics the
source should follow a uniform distribution. Although, this might be
hard to enforce in single word queries, for multiple word queries this
requirement will be easier to satisfy.

B. Retrieval Results of an Infinitely Large Database

We first compared the accuracy of the approximate solution
of (6) provided by (7) with the exact numerical solution. As a
comparison metric we chose the SNR. We used the same words
as before. Our query was the integer qd = {14}. We found the
equilibrium constants between qd = {14} and the signal values
0, . . . , 31. We assumed a uniform distribution for the source, that
is P (wj) = 1/32, j = 0, . . . , 31. We used M = 3 database
elements and k = 20 words per database element. According to
(15) and TP = 3 the SNR can be found as SNR(wC14) =
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Fig. 4. SNR for various ρ.

17∑
j=11

∣∣wC14wj∣∣ · ( 10∑
j=0

∣∣wC14wj∣∣+
31∑
j=18

∣∣wC14wj∣∣)−1. We calculated the

SNR for ρ = C/
∣∣wC14∣∣o = 10−3, . . . , 102 using the bisection

method and the approximation. The results are shown in Fig. 4.
Similarly, to the previous sections we can see that when ρ > 1
the approximation is very close to the exact solution. Furthermore,
observe that the SNR increases as ρ increases, which is a clear
indication that competitive hybridization is a critical and desired
aspect for the performance of our system.

To find the SNR as the database size increases we repeated the
above experiment but we increased the size of the database (M ) at
each iteration. Specifically, we want to verify the validity of (37).
Actually we will see that SNR(wCi )M ≤ SNR(wCi )∞, that is (37)
is an upper-bound for the SNR performance of a database with a
finite number (M ) of database elements.

In Fig. 5 the SNR of a database of size M = 1, . . . , 1010 for ρ =
100, 10, 1, 0.1, 0.01, is shown. The value of SNR(wC14)∞ = 3.2681·
1011, found using (39), is also shown with a dashed line. We see that
for large M we achieve the bound at infinity independently of the
value of ρ. Furthermore, as long as the query is in dilute, ρ > 1, the
performance of the database is very close to the maximum achievable
SNR. The graph also hints at an estimate of ρ relative to the database
size. We see that if we chose ρ > 1/M we can always have good
performance. As a rule of thumb, ρ = 1 should be adequate to achieve
good performance for databases with M > 100. Furthermore with
basic curve fitting we can find a tighter upper bound for the SNR
for any M and ρ as SNR(wCi )M,ρ ≤ SNR(wCi )∞ ·M/(M+ρ−1).
Fig. 6 illustrates this relationship for the experimental setup we are
considering in this section.

C. Simulation Results on Multiple Query Searches

To test the performance of the system with parallel queries we
followed the analysis of Section IV. We used a similar set as above.
Namely, we used the same 32 words of length 19 as in the previous
section. Our queries were the integers 14, and 29. We found the
equilibrium constants between 14, 29 and the signal values 0, . . . , 31.
We assumed a uniform distribution, therefore P (wj) = 1/32. We had
M database elements and k = 20 words per database element. We
also assumed equal query concentrations. We evaluated the SNR for
the two cases SNRI , SNRII of Section IV-A for a database size of
M = 1, . . . , 1010, and ρ = 100, 10, 1, 0.1, 0.01.

Fig. 5. SNR as a function of database size M , for various ρ. The upper
bound SNR(wC14)∞ is plotted as a dashed line for comparison.

Fig. 6. Comparison between SNR(wCi )M,ρ of Eq. VI-B (dashed line) and
the curve (solid line) for ρ = 0.01 of Fig. 5. The upper bound SNR(wC14)∞
is plotted as a dash-doted line for comparison

On the top of Fig. 7 we plotted the SNR for Case I where, an ‘OR’
type query against the two queries is performed. We see that for large
ρ the performance of the database reaches quickly an upper bound
when fewer than a M = 100 database elements are introduced. The
upper bound of the SNR is equal to 1.749 · 1010.

In the bottom of Fig. 7 we plotted the SNR for Case II where, an
‘AND’ type query against the two queries is performed. We see that
for large ρ the performance of the database again reaches an upper
bound with fewer than 100 database elements. The upper bound of
the SNR is equal to SNR∞II = 2.938 ·1021. Remarkably the bound
SNR∞II is the product of SNR(wC14)∞ and SNR(wC29)∞ which
are equal to 3.268 · 1011 and 8.99 · 109, respectively. We can argue
therefore that the retrieval performance per query is independent of
the number of simultaneous queries in the system, since the SNR∞
for query 14 is the same for the single (see Section VI-B and Fig. 5)
and the parallel query case (current section).

To verify the results of Section IV-B and to illustrate that the
methodology for simulating multiple queries can be directly applied
in microarray analysis we tested a case where we have a hypothetical
microarray where each spot, from a total of 32 spots, contains as
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Fig. 7. SNRI and SNRII of a parallel two query search as a function
of database size M , for various values of ρ. The upper bound SNR∞II is
plotted as a dashed line for comparison on the bottom plot

probe wCı . We assumed that |wCı |o = 10−3 and that our database
had M = 100 database elements with k = 20 words.

In order to find the spot intensities Iı we assumed that the original
statistics of the source and the concentration C of each database
element were known. More specifically, we assumed a uniform
distribution. Note that |wCı |o > C is required in order to simulate
microarray reaction conditions. By iterating (23) and (24) we found
the Iı(= αı = 1 − qı) and the annealing selectivities for the
complexes wCı wj .

For the case when we have no prior knowledge about the con-
centration of the words in the database, we work backwards, and
estimate |wj |o knowing only |wCı |o, Iı, and the equilibrium constants
Kı,j . We follow the analysis of Section IV-B, solve the system in
(33), and compute |̃wj |o using (24). We found that the MSE between
the actual values |wj |o and the estimated values |̃wj |o was equal to

E[
(
|wj |o − |̃wj |o

)2

] = 5.95 · 10−38, which can be attributed to
numerical precision errors.

VII. CONCLUSION

In this paper we presented an elaborate framework to simulate sin-
gle and parallel query scenarios. Our kinetic analysis and formulation
allows for numerical solutions, as well as approximate solutions under
certain conditions. When approximations are utilized, useful bounds

on the performance of a DNA database can be derived. Specifically,
we showed that the SNR of a DNA database is upper bounded by
the SNR of an infinitely large DNA database that has the same
source distribution. We also showed that microarray technology can
be used to estimate the statistics of an ‘unknown’ DNA database. A
number of simulation results were presented that verify and support
our claims. Our simulations indicate that it is very critical to simulate
codeword designs prior to experimentation in order to identify flaws
in the design. We also found appropriate concentration of database
and query in order to achieve good SNR in our retrieval. We also
showed that the distribution of source is critical in the accuracy of
the retrieval.

Our simulation framework has applications also in life sciences. It
can be used to simulate and optimize laboratory protocols such PCR,
primer and oligo design, microarray probe design and simulations.
For example, SNR type metrics (section III-D) can be defined to
assess the accuracy of hybridization of PCR primers or microarray
probes. Although, there exists literature in the topic, the solution
of coupled non-linear equations can be prohibitive computationally,
especially when considering large probe target systems (e.g., microar-
rays contain more than 20,000 probes). The proposed linearization ap-
proach can provide a fast approximate solution that can be either used
as a seed for more accurate computational solutions or provide an
estimate of error, which may be adequate for some applications [35].

As far as future improvements are concerned, it is of great interest
to find the speed of a query search. That is, how long do we
have to wait until we get an answer from a DNA database? Is the
search limited by the time it takes for the molecules to find each
other (diffusion limited) or by the actual hybridization reaction and
time to reach equilibrium (reaction limited) [51]? For example, it
is known that microarray hybridization portrays diffusion limited
characteristics [51]. To answer this type of questions, a kinetic and
diffusion analysis is required. Such analysis requires the solution of
coupled differential equations, a rather computationally intensive task.
Furthermore, solving the differential equations requires the definition
of the exact forward and reverse rates, which are system dependent
and largely affected by environmental parameters (e.g., presence of
surface, ionic conditions, viscosity of buffer). The solution of the
system of differential equations yields time relaxation constants that
portray the elapsed time necessary for the system to reach equilibrium
and hence hint on the speed of a query search. It is clear therefore that
real wet lab experiments are needed even in a small demonstrational
scale to derive such parameters.

APPENDIX

CODEWORD DESIGN

We design DNA codewords wi, such that the hybridization strength
between a codeword wi and the Watson-Crick complement of
another codeword wCj , as quantified by their melting temperature
TM (wi, w

C
j ), is inversely proportional to the absolute difference of

the corresponding encoded integer signal values |i−j|. To accomplish
this, we introduced the Noise (or inexact match) Tolerance Constraint
(NTC) [10], [52]:

for wi = C(i) and wj = C(j)

TM (wi, w
C
j ) =


maximum if i = j
∝ 1

f(|i−j|) if |i− j| 6 TP

< T if |i− j| > TP

(43)

where C() is the mapping (or the look-up table), f() represents
a monotonically increasing function, T and TP are user selected
thresholds that control the noise tolerance of the set. This constraint
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TABLE I
THE CODEWORDS OF LENGTH l = 19 FOR N = 32.

i wi i wi
0 AAGGTCCAAAGTGCCACCC 16 AACGGCGTTCGTACCAGCC
1 AAGGTCCAAAGTACCGGCC 17 AAAGGCGTATGTACCGCCC
2 AAGGTCCAGAGAACCTGCC 18 AATGGCGAGCGTACCTTCC
3 AAGGTCTCTAGTTCCGGCC 19 AACTTCGCGTGTACCTTCC
4 AAGGTCAAGAGTACCGGCC 20 AACTGCGCTTGTACCTTCC
5 AAGGTCATAGGTTCCTGCC 21 AACTGCGAGTGAGCCTTCC
6 AAGGTCACAGGTTCCATCC 22 AATTGCGCGTGAGCCTTCC
7 AAGGTCAAGGGTCTCATCC 23 AATTGCTTGTGGTCCTTCC
8 AATTCCAAGGGTTCCATCC 24 AATTGCTTGTGATGCTTCC
9 AATATCAAGGGACCCATCC 25 AATTGCTCGTGTCGCTTCC
10 AATACCAAGGGATCCATCC 26 AATTGCTTATGGTGCTGCC
11 AAATCCGAGGGACCCATCC 27 AATTGCTCTAGTAGCCGCC
12 AATGGCGTGGGACTCATCC 28 AATTGCTCGAGTAGCCGCC
13 AACGGCGTAGGATCCATCC 29 AATTGCTAGAGTAGCCGCC
14 AAAGGCGTCGGTGCCATCC 30 AAATGCTCGAGTAGCCGCC
15 AACGGCGTTCGTGCCATCC 31 AAATCCACGAGTAGCCGCC

combined with other self and group constraints (originating from bio-
chemical considerations), such as, the self-complementarity, consec-
utive bases, GC content, frame-shift, and the reverse complement
constraints are needed to ensure that only wanted duplexes will be
formed. In other words, the possibility of formation of unwanted
duplexes for |i − j| > TP is minimized while the possibility of
wanted ones for |i−j| ≤ TP is maximized. In a laboratory setting this
translates to minimizing the concentration of unwanted hybridizations
while maximizing the concentration of wanted ones.

We have developed a number of stochastic algorithms that can
generate codewords that satisfy the imposed constraints [29], [52].
Briefly explained, the algorithm presented in [29] starts with an initial
solution set S arranged in a matrix form where each row represents
a codeword. At each iteration, one of seven operators is selected at
random or based on a schedule to create a new set S′ of words.
The available operators are: (i) randomly perturb all the columns, (ii)
randomly interchange two columns, (iii) change randomly the bases
of a randomly selected column, (iv) add a column of a randomly
selected base at a random location, (v) remove a randomly selected
column, (vi) add a column of random bases at a random location,
and (vii) randomly change an element of S.

The objective of the algorithm is to minimize a cost function
C, which is defined as a weighted sum of all constraint violations,
thus min(C) = 0. Therefore, if C(S′) < C(S) then S = S′ and
i = 0 (a stagnation counter); otherwise, i = i + 1. To allow the
algorithm to escape from local minima we introduce a stochastic
non-improving step: S′ is accepted with probability ϑ = e

d
α·i , where

d = C(S)−C(S′), and α is a (fixed or updated over time) parameter.
The algorithm terminates if the cost is zero and a solution to the
constrained problem is returned or the maximum number of iterations
has been reached and hence it returns a set that partially fulfils the
constraints. A solution for 5-bit signals is tabulated in Table A, for
N = 32, l = 19 and TP = 3. All desired hybridizations have
a melting temperature (the temperature above which a duplex is
considered broken) above T = 55.4oC.
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