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Abstract. The synthesis of medical images is an intensity transforma-
tion of a given modality in a way that represents an acquisition with a
different modality (in the context of MRI this represents the synthesis
of images originating from different MR sequences). Most methods fol-
low a patch-based approach, which is computationally inefficient during
synthesis and requires some sort of ‘fusion’ to synthesize a whole image
from patch-level results. In this paper, we present a whole image synthesis
approach that relies on deep neural networks. Our architecture resem-
bles those of encoder-decoder networks, which aims to synthesize a source
MRI modality to an other target MRI modality. The proposed method
is computationally fast, it doesn’t require extensive amounts of memory,
and produces comparable results to recent patch-based approaches.

Keywords: Image synthesis · MRI · Stacked neural network ·
Autoencoder

1 Introduction

Image synthesis has attracted a lot of attention lately due to exciting potential
applications in medical imaging, since synthesized images for example may be
used to impute missing images (in a large database, e.g., as in [22]), to derive
images lacking a particular pathology, which is not present in the input modality
(for detection purposes, e.g., [29]), to increase the resolution of input data (e.g.,
[14]), to perform attenuation correction (e.g., [3]), and others.

Early works in image synthesis followed a physics driven approach [6,26],
using the physical models of the acquisition, they applied directly the trans-
formation on images. Polynomial mixture models like in [7] or non parametric
approaches like joint histogram [15] optimized a transformation map from a sin-
gle image into an other modality. The idea of using raw data directly within the
synthesis started with [20], which utilized non-local pair-wise interactions in a
super-resolution context. This idea, together with the pioneering work in image
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analogies [8], spawned several works in data driven synthesis. Typically this hap-
pens in a supervised fashion1, where pairs of images (or volumes) corresponding
to the same subject but of different modality are being used. Modality can refer
to different physical imaging schemes such as CT, MRI, US, PET but also within
an MRI context to distinguish images acquired by different sequences for example
T1 vs. T2. Typically, these approaches break the available training data in patches
and construct a database linking patches among each other. During inference,
the query image is used to find similar in appearance patches in the database and
the synthesized modality is generated by fusing the matched patches. For exam-
ple, similar to label propagation [2,19,28], the authors in [11,29] approached
the problem of synthesis with nearest neighbors patch-matching. Similarly, the
work in [4] used a generative model of image synthesis using a probabilistic
framework. These methods are simple but they require a lot of memory and
computational time during inference. Also, the process of how individual patch
results are fused together into a final image may have undesired effects. Blending
the patches by using simple averaging leads to smoothing, and approaches which
they use only the central pixel of the patches, only they may lead to noisy and
locally discontinuous outcomes.

One approach which at least reduces the computational cost at run-time dur-
ing inference, is treating the image synthesis as a regression [23]. A mapping is
learned to relate features around a local neighborhood from the input modality to
a pixel in the target modality, for example with the use of a neural network [23].
Another example is in [14], where they learn the joint probability between high
resolution and low resolution patches, for the purpose of super resolution. Sim-
ilarly, coupled sparse representation [21], and random forest approaches [1,12]
use patches from the source images for regression analysis, in order to perform
the synthesis of a target modality. These approaches are usually less computa-
tionally intensive, because they usually store only the mapping function. Also,
depending on the approach, inference can be simple, but still they operate at
the patch or pixel level.

In this paper, motivated by the above shortcomings, we introduce a new
deep learning approach which we term Deep Encoder-Decoder Image Synthe-
sizer (DEDIS). Compared to patch-based methods, DEDIS retains low compu-
tational/memory requirements, and it is capable of predicting the whole image
directly, and hence it provides homogeneous and sharp synthetic images. This
multi-output regression is achieved based on a deep encoder network which draws
inspiration from Stacked Denoising Autoencoders [16]. Essentially, DEDIS (with
its architecture shown in Fig. 1), given an input source image, provides as an
output a synthesized modality of the same size as the input. Our training input
consists of input-output pairs of imaging data. To prevent over-fitting, which
can occur when networks are deep, we use dataset augmentation and bottleneck
middle layers, which they compress and find useful representations [25]. To ini-
tialize the network with reasonable weights (filters), ensuring better convergence,

1 There is also the recent exciting unsupervised work by [24], however for ease of
introducing the reader to the topic this is not discussed here.
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we rely on layer-wise pre-training with Restricted Boltzmann Machine (RBM),
because it has been shown in the literature the relationship between RBM and
Autoencoders [13]. The fine tuning of the complete network is obtained via back-
propagation such that the filters are being updated, in order the reconstructed
(synthesized) modality to match the desired output.

To evaluate our method we used the SISS brain multimodal MR dataset
from the ISLES 2015 workshop [17] and we compared with a classical patch-
based approach [29]. Overall, our findings show that the proposed method is
capable of preserving anatomical details. and the quantitative analysis, which
has been measured with classical measures according to the literature, showed
similar performance amongst the two. DEDIS can synthesize a full volume in
∼0.63 s.

The rest of the paper is organized as follows. In Sect. 2, the proposed DEDIS
architecture is described alongside its pre-training and inference steps. Section 3
presents experimental results, while Sect. 4 offers conclusions.

Fig. 1. The proposed DEDIS network, which is able to synthesize a source image into
the target modality. Pre-training is performed using Restricted Boltzmann Machines.
The GB-RBM and the BB-RBM are being used greedily to initialize the weights
between L1, L2, and L3, using the source modality images. The same protocol is
followed for L5, L4, and L3, but instead with the use of the target modality.

2 Deep Encoder-Decoder Image Synthesizer (DEDIS)

Our image synthesis approach relies essentially on finding a mapping between
an input image IS and a desired IT, which they correspond to the source and
target modalities. Assuming that the sizes are identical, this is a multi-input
multi-output regression problem. To find this mapping we rely on a Deep Neural
Network architecture. We present sequentially its description, the pre-training
of the layer weights, the fine-tuning of the network parameters, and finally we
describe inference at test time.

2.1 The DEDIS Architecture

The architecture we devised is inspired by Stacked Autoencoders [16] and it is
shown in Fig. 1. It can be easily trained in supervised fashion to learn the non-
linear mapping, which relates two modalities.
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Our goal is to find the relationship which associates the representations of two
different modalities. Thus, we added an intermediate layer between the encod-
ing/decoding layers, in order to observe this latent relationship. Specifically, the
input layer L1 receives a full slice of a 2D image IS from the source modal-
ity’s volume acquisition. Then, L2 and L3 aim to “encode” the input. Observe
that, as depicted in Fig. 1, they have lower dimensions. This is deliberate, as by
adding this bottleneck improves regularization and reduces over-fitting [25]. The
subsequent layers L4 and L5 essentially “decode” the information coming from
previous layers, providing at the output the desired target modality.

The entire set of parameters in our network is Θ =
{
W(l),b(l)

}
, for all

1 ≤ l ≤ 4, where l denotes the number of the layer, W(l) is the weight matrix
that connects two consecutive layers l and l + 1, and b(l) denotes the bias term.
These parameters are being optimized using the back-propagation algorithm [27].

Particularly, we use back-propagation to optimize the whole network with
pre-trained weights, as described below, in order to improve the correspondence
between the source and target modality. Moreover, the back-propagation will
allow the layer to share information by capturing the non-linearity that the pre-
training could not characterize. In order to be compatible with the pre-training
phase, we used the sigmoid as activation function of the layers L2 -L4 (cf. Eq. (1))
namely,

al+1 = σ
(
W(l)a(l) + b(l)

)
, 1 ≤ l ≤ 3, (1)

whereas for the output L5 we adopted the linear activation function (cf. Eq. (2)),

ÎT = W(4)a(4) + b(4). (2)

Note that a(1) ≡ IS, specifically it is a slice of the source modality. These func-
tions are differentiable and their derivative is known and easy to compute. The
back-propagation error optimizes the parameters in Θ by minimizing the follow-
ing cost function

J(IS, IT;Θ) =
1
2
||̂IT − IT||22, (3)

where ÎT is a function of the parameters Θ (feed-forward step).

2.2 Pre-training

Learning the mapping of two different modalities is a complex task. To assist our
network architecture in optimizing the parameters, we initialize the weights with
pre-trained ones. For this purpose, we pre-train the weights per-layer relying on
the unsupervised learning power of Restricted Boltzmann Machine (RBM) [10],
leveraging the tight relationship between Autoencoders and RBM [13]. Specif-
ically, we adopted a Gaussian-Bernoulli RBM (GB-RBM) [5] to pre-train the
weights and the bias connecting L1 and L2. Then, the output of this network is
provided to a Bernoulli-Bernoulli RBM (BB-RBM) [9] that pre-trains the con-
nections between L2 and L3. The same process is being followed for the layers
L4 and L5, as well as for the layers L3 and L4, while here there are being used
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as training images the ones of the target modality instead. Once the parameters
in Θ are pre-trained, we perform the fine-tuning and we train the network with
back-propagation as discussed previously.

2.3 Inference

At test time, we provide an image from the source modality to the layer L1 and
we perform a single feed-forward step into the entire network. The activations
on the layer L5 are the output of the network and represent the actual synthetic
image in the target modality domain. This demonstrates the simplicity and
elegance of this holistic approach to synthesis.

Retaining this network requires less memory than retaining a patch database.
While training the network is computationally demanding this happens offline.
Performing a feed-forward step at inference is significantly more efficient than
the nearest neighbours being used in most patch-based approaches.

3 Experiments and Results

In this section, we evaluate the proposed deep neural network approach by gen-
erating T2 scans from T1 scans and DWI scans from T2. We follow evaluation
settings and metrics that there were recently had been used in [29]. Furthermore,
we compare with the patch-based method of [29].

Dataset: We used the SISS dataset from the ISLES 2015 workshop [17]. Specif-
ically, we used the training dataset, which includes 28 subjects. For every sub-
ject, there are images of four modalities: T1, T2, VFlair, and DWI, of dimension
approximately 230×230×150. We rely on this dataset since it has been already
preprocessed and the subjects are co-registered. If we had chosen another popu-
lar dataset. It would be necessary to perform various steps of pre-processing. The
pre-processing could vary according to the implementation and the tools might
had been used, eventually leading to potential bias and inability to compare
directly among papers in the same area.

Model of Comparison: Modality Propagation (MP) [29] is a patch-based
method for medical image synthesis, which is commonly used for comparisons,
even in the most recent papers which use neural networks [23,24]. This method
comprises of a database with paired images of different modalities. Assuming fine
alignment between the input image and those in the database, the synthesis of
the target image is being made through patch matching nearest neighbor search.
To reduce the search space within the database, the method uses techniques to
reduce both the population and the area searched around a specific point loca-
tion. Additionally, the method introduces an iterative regularization term that
takes advantage of the produced synthetic image. We implemented this method
de novo and we used the same parameters as the authors.

Preprocessing: The portion occupied by brain matter is less than the actual
size of the image and this does not affect our learning. For a more efficient com-
putation, we crop all the images using the biggest bounding box that encloses
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Fig. 2. Example of reconstruction with the proposed DEDIS network and Modality
Propagation (MP) [29]. In this picture, we have a training (first row) and testing
subject (second row). The first column shows the source modality images T1, the
second column shows the ground-truth image in the target modality. Then, the third
column shows the output of our DNN. The last column is the result from MP.

the area covered by the brain across all the subjects. Subsequently, plane slices
have been rescaled by half. Even though our method is computationally fast, our
implementation of Modality Propagation is not. Thus, to keep the comparison
fair we used the same image sizes for both methods. After these operations, all
the images have dimension 79×100. Then, each image is individually normalized,
by removing the mean and dividing by the standard deviation of the intensities
within the image. To increase the data to train on and add some bilateral invari-
ance, we augmented the dataset. The augmentation have been made by flipping
all training data across the horizontal line, since the brain is almost symmetric
for healthy subjects along the interhemispheric fissure, doubling the dataset size.

Experimental Setup: We selected the size of our network as multiples
of the input layers, which corresponds to the number of pixels within one
slice after preprocessing. The chosen architecture is summarized as follows:
[7900, 2250, 1125, 2250, 7900]. Other configurations, e.g. over-complete setup sce-
narios, that is the layers in between (L2 and L3 ) were bigger than the input
layer, induced redundant information and were prone to over-fitting. In the other
hand, when we reduced the dimensions of the inner layers, we observed that the
network had learned better representations.

We adopted 7-fold cross-validation, in which 24 subjects had been used for
training, and the remaining 4 had been used for testing. The training, included
only the slices containing brain matter. We iterated the pre-training of RBMs
with 200 epochs, whereas the fine-tuning had been performed with 300 iterations.
We built our network with the Deep Learning Toolbox 2 and thus our code had
been based mostly in Matlab. We ran our experiments on an Intel Xeon 3.5 GHz
CPU with a GeForce GTX Titan X GPU running in Debian.
2 Freely available at https://github.com/rasmusbergpalm/DeepLearnToolbox [18]. We

modified the current implementation to enable also GPU (CUDA) processing.

https://github.com/rasmusbergpalm/DeepLearnToolbox


Whole Image Synthesis Using a Deep Encoder-Decoder Network 133

Table 1. Experimental results of our proposed method, when it is trained from modal-
ity T1 to VFlair, input and target modality respectively. We compared test results with
Modality Propagation [29]. Values are mean (std).

DEDIS Modality Propagation [29]

Training Testing Training Testing

M.A.E 0.1261 (0.0558) 0.2400 (0.0490) - 0.1196 (0.0467)

M.S.E 0.0696 (0.0863) 0.2212 (0.1226) - 0.1501 (0.1151)

Norm. X-Corr 0.9652 (0.0454) 0.8886 (0.0652) - 0.9292 (0.0559)

Table 2. Similar to Table 1 but synthesizing T2 from DWI.

DEDIS Modality Propagation [29]

Training Testing Training Testing

M.A.E 0.0544 (0.0123) 0.2697 (0.2898) - 0.1456 (0.0441)

M.S.E 0.0118 (0.0255) 0.2898 (0.1360) - 0.2008 (0.1897)

Norm. X-Corr 0.9940 (0.0145) 0.8573 (0.0750) - 0.9096 (0.0784)

Evaluation Metrics: As commonly done by other works in this area, we
adopted three different metrics to quantitatively evaluate our method: (i) mean
absolute error (M.A.E.), (ii) mean squared error (M.S.E.), and (iii) normalized
cross-correlation (Norm. X-Corr), where for the first two the lower the better
and for the third the higher the better.

Fig. 3. The first 8 filters from the weight matrix W (1) connecting L1 and L2 of DEDIS
after 300 iterations of fine-tuning.

Results and Discussion: In Fig. 2 we show a visual example of synthesized
images using DEDIS, where images of T1 were used as source modality and as
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target modality the corresponding VFlair contrast. In this example, we show
images from the training and also testing, where both approaches (DEDIS and
MP) have not seen the input image. In the last two columns we present esti-
mated instances of DNN and the MP respectively. The first and second row
show training and testing examples accordingly. The proposed method is able
to preserve anatomical details (e.g., cortical folds), both in training and testing
examples. This is particularly evident in the testing case: the MP was unable
to reconstruct fully the lateral ventricle, most likely attributed to the large cell
size we used. This demonstrates the benefit of using our whole image approach
to synthesis. In fact, as Fig. 3 shows, filters learned by DEDIS, preserve both
anatomical and contrast related information.

Quantitative results across the study population and the cross-validation are
reported in Table 1, for VFlair synthesis with T1 as input, and in Table 2 for
T2 synthesis given DWI as input. We show training and testing performance for
DEDIS, as well as the testing error of MP [29]. As done in [23] we do not report
the training performance of MP as it is not applicable. Whilst training results
are above MP, at testing we are slightly lower. Perhaps our network still over-fits
and strategies to mitigate that in the future could improve performance.

Critically though, we do gain in computational performance at inference.
DEDIS takes 0.004 seconds per slice at test time3, orders of magnitude less than
the 80 seconds required by MP. The implications of the k-NN search required
by MP within the image database and the local patch-based search are evident.
Note that the search time scales (albeit linearly) with the size of the database
(or the window) and as such the more the images in the database the more
the computational time is in demand. In contrast, our approach synthesizes the
whole image while at the same time, since it is independent of database size for
inference.

Similar argument holds for memory size requirements. Our network at these
settings occupies 300 MB in memory, whilst MP 800 MB, almost 3-fold more. As
database size increases, e.g. the number of training images increases, memory
requirements for MP increase, whereas ours remains the same.

4 Conclusion

In this paper, we introduced a Deep Neural Network that can learn to synthesise
a modality. Our network is optimized via back-propagation and it needs a set
of data belonging to the input and target modality, as it is illustrated in Fig. 1.
We pre-trained the network using Restricted Boltzmann Machines, which learned
the pair-wise weight matrices that there were fine-tuned at later stage. Example-
based methods are expensive both in time and memory resources. Instead our

3 We use only the CPU and not GPU to permit fair comparison with our MP imple-
mentation which does not use GPU.
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approach, which we termed DEDIS, synthesizes whole images treating the prob-
lem as a multi-output regression. Overall, we show that our method gives com-
parable results with a patch-based method (Modality Propagation) [29] when
trained on a preprocessed dataset. But our method is almost 1000 times faster.
Being fast is important when for example the synthesis method will be used
within a data imputation pipeline of a very large database (e.g., biobank).

Relying on the advantages of the proposed network, the future orientation
to explore is the one enabling DEDIS architecture to synthesize a whole volume
at once, instead of slice by slice.

Acknowledgement. We thank NVIDIA Inc. for providing us with a Titan X GPU
used for our experiments.
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