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Abstract. Cardiac Phase-resolved Blood Oxygen-Level-Dependent
(CP-BOLD) MR is capable of diagnosing an ongoing ischemia by detect-
ing changes in myocardial intensity patterns at rest without any contrast
and stress agents. Visualizing and detecting these changes require signifi-
cant post-processing, including myocardial segmentation for isolating the
myocardium. But, changes in myocardial intensity pattern and myocar-
dial shape due to the heart’s motion challenge automated standard CINE
MR myocardial segmentation techniques resulting in a significant drop
of segmentation accuracy. We hypothesize that the main reason behind
this phenomenon is the lack of discernible features. In this paper, a multi
scale discriminative dictionary learning approach is proposed for super-
vised learning and sparse representation of the myocardium, to improve
the myocardial feature selection. The technique is validated on a chal-
lenging dataset of CP-BOLD MR and standard CINE MR acquired in
baseline and ischemic condition across 10 canine subjects. The proposed
method significantly outperforms standard cardiac segmentation tech-
niques, including segmentation via registration, level sets and supervised
methods for myocardial segmentation.

Keywords: Dictionary learning · CP-BOLD MR · CINE MR · Segmen-
tation

1 Introduction

CP-BOLD MR is a truly noninvasive (without contrast or stress agents and
ionizing radiation) method for early diagnosis of ongoing ischemia. CP-BOLD
identifies the ischemic myocardium by examining changes in myocardial sig-
nal intensity patterns as a function of cardiac phase [14]. However, visualiz-
ing and quantifying such changes requires significant post-processing, including
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myocardial segmentation to isolate the myocardium from the rest of the anatomy.
In particular, although CP-BOLD is a cine type acquisition, automated myocar-
dial segmentation and registration algorithms developed for standard CINE
under-perform, due to the spatio-temporal intensity variations of the myocardial
BOLD effect [9], an example of which is shown in Fig. 1. Thus, in CP-BOLD in
addition to violations of shape invariance (as with standard CINE MRI) the
principal assumption of appearance invariance (consistent intensity) is violated
as well.

As a result, no automated CP-BOLD MR myocardial segmentation algo-
rithms exist, and semi-automated methods based on tracking are currently
employed [13]. We hypothesize that it is due to the lack of appropriate fea-
tures, which are invariant yet unique and descriptive under the particular type of
appearance and shape deformation observed in CP-BOLD images. Rather than
relying on low-level features used often for myocardial segmentation of standard
CINE MR which are inconsistent for CP-BOLD MR, a more generalized feature
learning method should be developed to accommodate the myocardial BOLD
effect while still being reliable in the CINE MR case.

Fig. 1. Exemplary cardiac phases of CP-BOLD MR (top row) and standard CINE MR
(bottom row) obtained from the same subject under baseline conditions (absence of
ischemia) where the myocardium is color coded to underline the challenge of appearance
variation in CP-BOLD MR which is minimal in the case of standard CINE MR (Color
figure online).

We adopt a patch-based discriminative dictionary learning technique (which
has been used also in echocardiography [6]) to learn features from previously
segmented data in a fully supervised manner. The motivation behind the choice
of a sparse dictionary is to employ a compact and high-fidelity low-dimensional
subspace representation which is able to extract semantic information of the
myocardium as well [16]. The key observation behind this strategy is that, though
the patch intensity level varies significantly across the cardiac cycle, sparse rep-
resentations based on learnt dictionaries are invariant across the cardiac cycle,
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as well as unique and robust. Briefly described, during training two separate
dictionaries are learnt at multiple scales for the myocardium and background.
In this regard, we also introduce a discriminative initialization step (discard-
ing patches with high values in intra-class Gram matrix) to promote diversity
in initialization, and a discriminative pruning step (discarding training patches
with high values in inter-class Gram matrix) to further boost the discriminative
abilities of the dictionaries. During testing, multiscale sparse features are used.

The main contributions of the paper are twofold. First, we experimentally
demonstrate that BOLD contrast significantly affects the accuracy of segmenta-
tion algorithms (including segmentation via registration of an atlas, level sets,
supervised classifier-based and other dictionary-based methods) which instead
perform well in standard CINE MR. Second, to address our hypothesis we design
a set of compact features using Multi-Scale Discriminative Dictionary Learning,
which can effectively represent the myocardium in CP-BOLD MR. The method
has been evaluated on canine subjects, which makes the problem even more chal-
lenging (lower accuracy is expected) due to the smaller size of myocardium. The
remainder of the paper is organized as follows: Sect. 2 discusses related work,
Sect. 3 presents the proposed method, whereas results are described in Sect. 4.
Finally, Sect. 5 offers discussions and conclusion.

2 Related Work

Automated myocardial segmentation for standard CINE MR is a well studied
problem [10]. Most of these algorithms can be broadly classified into three cat-
egories based on whether the methodology is segmentation-only, level set or
Atlas-based segmentation with inherent registration. Recently, Atlas-based seg-
mentation techniques have received significant attention. The myocardial seg-
mentation masks available from other subject(s) are generally propagated to
unseen data in Atlas-based techniques [2] using non-rigid registration algorithms,
e.g., diffeomorphic demons (dDemons) [15], FFD-MI [5] or probabilistic label
fusion [2]. Level set class of techniques uses a non-parametric way for segment-
ing myocardium with weak prior knowledge [3,7].

Segmentation-only class of techniques mainly focuses on feature-based rep-
resentation of the myocardium. Texture information is generally considered as
an effective feature representation of the myocardium for standard CINE MR
images [17]. The patch-based static discriminative dictionary learning technique
(SJTAD) [11] and Multi-scale Appearance Dictionary Learning technique [6]
have achieved high accuracy and are considered as state-of-the-art mechanisms
for supervised learning of discernible myocardial features from previously seg-
mented data. In this paper, we follow the segmentation-only approach with the
major feature of considering multi-scale appearance and texture information as
the input of a discriminative dictionary learning procedure.

3 Method

General image segmentation strategies are developed on the assumption that
both appearance and shape do not vary considerably across the images of a given
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sequence. Cardiac motion affects the shape invariance assumption, and varying
CP-BOLD signal intensities violate the appearance invariance assumption as
well. To overcome this issue, dictionary learning techniques can be leveraged to
learn better representative features. To this end, we propose a Multi-Scale Dis-
criminative Dictionary Learning (MSDDL) method (detailed in Algorithm 1).
The features learnt via dictionary learning are tested in a rudimentary classifi-
cation scheme solely for the purpose of comparing to other methods.

Feature generation with Multi-scale Discriminative Dictionary Learn-
ing (MSDDL): Given some sequences of training images and corresponding
ground truth labels (i.e. masks), we can obtain two sets of matrices, {Y B

k }Kk=1

and {Y M
k }Kk=1, where the matrix Y B

k contains the background information at
a particular scale k (each scale is characterized by a different patch size), and
Y M
k is the corresponding matrix referring to the myocardium. Information is col-

lected from image patches: squared patches are sampled around each pixel of the
training images. More precisely, the i-th column of the matrix Y B

k (and similarly
for the matrix Y M

k ) is obtained by concatenating the normalized patch vector of
pixel intensities at scale k, taken around the i-th pixel in the background, along
with the Gabor and HOG features of the same patch. Our MSDDL method takes
as input these two sets of training matrices, to learn, at each scale k, two dictio-
naries, DB

k and DM
k , and two sparse feature matrices, XB

k and XM
k . E.g. , the

i-th column of the matrix XB
k , xB

k,i, is considered as the discriminative feature
vector for the particular pixel corresponding to the i-th column in Y B

j . Dictio-
naries and sparse features are trained via the well known K-SVD algorithm [1].
One main modification to K-SVD is the use of the “intra-class Gram matrix”
to promote diversity in the initialization step. The idea is to have a subset of
patches as much diverse as possible to train dictionaries and sparse features.
For a given class considered (let us say background) and a given scale k, we
can define the intra-class Gram matrix as GB

k = (Y B
k )TY B

k . To ensure a proper
discriminative initialization, patches that correspond to high values in the Gram
matrix are discarded from the training before performing K-SVD. Notably, we
sort the training patches w.r.t. the sum of their related coefficients in the Gram
Matrix, and we prune them by choosing a certain percentage.

A second proposed modification relates to a pruning step, which is performed
after K-SVD. In this case, at each scale k, an “inter-class Gram matrix” is com-
puted (GBM

k = (DB
k )TDM

k ): the atoms of each dictionary are sorted according
to their cumulative coefficients in GBM , and a chosen percentage of them is
discarded to ensure mutual exclusiveness between the dictionaries of the two
different classes. The philosophy behind this operation is similar to the one of
the discriminative dictionary learning algorithm proposed in [8], where the norm
of the inter-class Gram matrix appears in the optimization formulation as a con-
straint to be minimized. By pruning the undesired dictionary atoms all at one
time, we actually adopt a greedier and low-complexity approach to the same
problem. Moreover, we believe that, instead of globally minimizing the Gram
matrix norm, directly removing the most “problematic” patches, which create
ambiguity between background and myocardium, is more effective in our case.
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Algorithm 1. Multi-scale Discriminative Dictionary Learning (MSDDL)
Input:Multi-scale training patches for background and the myocardium:
{Y B

k }K
k=1 and {Y M

k }K
k=1

Output:Multi-scale dictionaries for background and the myocardium:
{DB

k }K
k=1 and {DM

k }K
k=1

1: for k = 1...K do
2: for C={B,M} do
3: Evaluate Y C

k

4: Compute the intra-class Gram matrix GC
k

5: Discard atoms with high values in GC
k

6: Learn dictionary and sparse feature matrix with the K-SVD algorithm
7:

minimize
DC

k
,XC

k

‖Y C
k − DC

k XC
k ‖2

2 s. t. ‖xC
k,i‖0 ≤ L

8: Compute the inter-class Gram matrix GBM
k

9: Discard from DB
k and DM

k atoms with high values in GBM
k

Building a Rudimentary Classifier for Segmentation: When considering
the same patch-based approach in a segmentation problem, we have a set of test
matrices {Ŷk}Kk=1, obtained by sampling patches at multiple scales from the test
image, and concatenating intensity values of these patches, along with Gabor
and HOG features. The goal is to assign to each pixel of the test image a label,
i.e. establish if the pixel is included in the background or the myocardial region.
To perform this classification, we use the multi-scale dictionaries, {DB

k }Kk=1 and
{DM

k }Kk=1, previously learnt with MSDDL. The Orthogonal Matching Pursuit
(OMP) algorithm [12] is used to compute, at each scale k, the two sparse feature
matrices X̂B

k and X̂M
k . A certain patch at scale k, ŷk,i will be assigned to the

class that gives the smallest dictionary approximation error. More precisely, if
‖ŷk,i−DB

k ŷB
k,i‖2 is larger than ‖ŷk,i−DM

k ŷM
k,i‖2, at scale k the patch is assigned to

the background; otherwise, it is considered belonging to the myocardial region.
In this study, we employed a simple majority voting across all scales to obtain
the final classification for each pixel of the test image.

4 Results

This section offers a qualitative and quantitative assessment of our proposed
method w.r.t. state-of-the-art methods, to demonstrate its effectiveness for
myocardial segmentation. It is particularly important to note that our method
significantly outperforms all methods from current literature in both baseline
and ischemia cases of CP-BOLD MR, whereas yields state-of-the-art results for
both baseline and ischemia cases of standard CINE MR.

4.1 Data Preparation and Parameter Settings

2D short-axis images of the whole cardiac cycle were acquired at baseline and
severe ischemia (inflicted as stenosis of the left-anterior descending coronary
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artery (LAD)) on a 1.5T Espree (Siemens Healthcare) in the same 10 canines
along mid ventricle using both standard CINE and a flow and motion com-
pensated CP-BOLD acquisition within few minutes of each other. All quantita-
tive experiments are performed in a strict leave-one-subject-out cross-validation
setting.

As for the parameters of MSDDL, in this paper we have empirically chosen a
dictionary of 1000 atoms for foreground and background respectively, a sparsity
of 4, a number of scales K = 3, and 9 × 9, 11 × 11 and 13 × 13 as patch sizes.
We tested the parameter sensitivity within a reasonable range, but a detailed
performance chart is beyond the scope of this paper.

4.2 Visual Comparison of the Discriminativeness of the Learnt
Dictionaries and Features

The feature patches learnt by MSDDL are discriminative enough for representing
the myocardium separately from the background. In particular a set of feature
patches of size 11 × 11 (without HOG and Gabor) learnt for the myocardium
and background are shown in Fig. 2 to illustrate the discriminativeness of the
learnt feature patches.

The motivations behind choosing each step of the proposed MSDDL strat-
egy and the effectiveness of the features learnt by this technique are highlighted
in Fig. 3, where the Cosine Similarity metric [4] is used to determine the most
similar patches to a given patch in the MSDDL feature space. When select-
ing a patch inside the myocardium, without texture and Gram filtering, similar
patches are found outside the myocardium too. Adding texture improves some-
what localization, but when considering also Gram filtering, the discriminative
strengths of the approach are more evident, since few similar patches are found
only within the myocardium. Similar observations hold also for the case of images
from standard CINE as well (not shown for brevity).

4.3 Quantitative Comparison

As segmentation quality metric, the Dice coefficient, which measures the
overlap between ground truth segmentation masks and those obtained by the

Fig. 2. Exemplar set of dictionary atoms (without HOG and Gabor) for Background
(left) and Myocardium (right) learnt from patches of size 11 × 11 on CP-BOLD MR.
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Fig. 3. Cosine Similarity (CS) between the learnt features showing the advantage of
adding texture and Gram filtering. Test patch denoted by a green square in the raw
image (first column), MSDDL only on appearance (second column), with texture (third
column), and with proposed Gram filtering (final column) (Color figure online).

algorithm(s), is employed. For our implementation of Atlas-based segmentation
methods, the registration algorithms dDemons [15] and FFD-MI [5] were used to
propagate the segmentation mask of the end-diastole image from all other sub-
jects to the end-diastole image of the test subject, followed by a majority voting to
obtain the final myocardial segmentation. For level-set class of methods, a hybrid
approach of [3] for endocardium and [7] for epicardium is used. For supervised
classifier-based methods, namely Appearance Classification using Random Forest
(ACRF) and Texture-Appearance Classification using Random Forest (TACRF)
we used random forests as classifiers to get segmentation labels from different fea-
tures. To provide more context we compare our approach with dictionary-based
methods, SJTAD and RDDL. SJTAD is an implementation of the method in [11],
whereas for RDDL we used the discriminative dictionary learning of [8] within the
same classification framework that we described in Sect. 3. Finally to showcase the
strengths of our design choices we considered two additional variants of MSDDL,
one without Gram filtering (MSDDL No GF) and one without texture informa-
tion as well (MSDDL No GF No Texture). Note that the former is similar to [6]
without level-set refinement.

As Table 1 shows, overall, when standard CINE acquisition is used, most algo-
rithms perform adequately and the presence of ischemia slightly reduces per-
formance. However, when BOLD contrast is present, other approaches fail to
accommodate changes in appearance due to contrast, but MSDDL obtains con-
sistent performance. Specifically, Atlas-based methods are shown to perform well
in standard CINE cases but poorly in CP-BOLD. ACRF and TACRF, instead,
show very low performance in both standard CINE MR and CP-BOLD MR.
Among dictionary-based techniques, SJTAD performs well in standard CINE
MR, but underperforms in CP-BOLD MR. Our MSDDL method outperforms
all approaches. When comparing it with its variants, it shows that both texture
and appearance are important and that the pruning steps based on the Gram
matrix are extremely beneficial. Even when we replaced our dictionary learning
algorithm with RDDL, an algorithm that forces discrimination by explicitly penal-
izing the inter-class Gram matrix norm, the results are unimpressive. These find-
ings are also statistically significant using a paired t-test between the results of
MSDDL and the second-best performing one, i.e. SJTAD [11]. For both baseline
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Table 1. Dice coefficient (mean(std)) for segmentation accuracy in %.

Baseline Ischemia

Methods Standard CINE CP-BOLD Standard CINE CP-BOLD

Atlas-based methods

dDemons [15] 60(8) 55(8) 56(6) 49(7)

FFD-MI [5] 60(3) 54(8) 54(8) 45(6)

Level set-based methods

CVL [3,7] 50(8) 43(11) 45(9) 37(10)

Supervised classifier-based methods

ACRF 57(3) 25(2) 52(3) 21(2)

TACRF 65(2) 29(3) 59(1) 24(2)

Dictionary-based methods

SJTAD [11] 71(2) 32(3) 66(3) 23(4)

RDDL [8] 42(15) 50(20) 48(13) 61(12)

MSDDL No GF No Texture 52(8) 51(7) 45(4) 51(6)

MSDDL No GF 62(5) 52(4) 53(5) 57(7)

MSDDL 75(3)† 75(2)� 72(2)‡ 71(2)�

and ischemia cases of CP-BOLD MR, MSDDL shows improved performance com-
pared to SJTAD (�, p < 0.001). In the case of standard CINE MR although dif-
ferences appear small they are still statistically significant, i.e. (†, p < 0.05) and
(‡, p < 0.01) for baseline and ischemia respectively.

5 Discussions and Conclusion

Rethinking the assumptions underlying the design of analysis algorithms for
standard CINE MR is critical for successfully developing the appropriate analyt-
ical tools necessary to meet the new challenges posed by myocardial CP-BOLD
MR. In particular, this study pin-pointed the challenges the BOLD effect poses
on these assumptions made when segmenting the myocardium and quantita-
tively analyzed the adverse effect on algorithmic performance. In addition, in
this study we showed that by learning appropriate features to best represent
texture and appearance in CP-BOLD, it is possible to improve the performance
of automated algorithms for myocardial segmentation. This study also showed
overall low performance of state-of-the-algorithms even for standard CINE MR
in canine subjects, which can be attributed to the small size of the myocardium.
The proposed algorithm does not exploit the temporal information across cardiac
phases and doing so should increase performance in future extensions. Finally,
such post-processing tools are expected to be instrumental in advancing the
utility of cardiac CP-BOLD MR towards effective clinical translation.
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